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Summary

1. To realize the potential of citizens to contribute to conservation efforts through the acqui-

sition of data for broad-scale species distribution models, scientists need to understand and

minimize the influences of commonly observed sample selection bias on model performance.

Yet evaluating these data with independent, planned surveys is rare, even though such evalua-

tion is necessary for understanding and applying data to conservation decisions.

2. We used the state-listed fox squirrel Sciurus niger in Florida, USA, to interpret the perfor-

mance of models created with opportunistic observations from citizens and professionals by

validating models with independent, planned surveys.

3. Data from both citizens and professionals showed sample selection bias with more obser-

vations within 50 m of a road. While these groups showed similar sample selection bias in ref-

erence to roads, there were clear differences in the spatial coverage of the groups, with

citizens observing fox squirrels more frequently in developed areas.

4. Based on predictions at planned field surveys sites, models developed from citizens gener-

ally performed similarly to those developed with data collected by professionals. Accounting

for potential sample selection bias in models, either through the use of covariates or via

aggregating data into home range size grids, provided only slight increases in model perfor-

mance.

5. Synthesis and applications. Despite sample selection biases, over a broad spatial scale

opportunistic citizen data provided reliable predictions and estimates of habitat relationships

needed to advance conservation efforts. Our results suggest that the use of professionals may

not be needed in volunteer programmes used to determine the distribution of species of con-

servation interest across broad spatial scales.

Key-words: citizen science, data aggregation, fox squirrel, habitat relationships, opportunistic

data, predictive performance, road bias, sample selection bias, species distribution models,

validation

Introduction

Development of effective conservation strategies for the

planet’s growing biodiversity crisis (Ceballos et al. 2015)

necessitates an understanding of species’ broad-scale dis-

tributions and habitat associations (Kremen et al. 2008;

Hochachka et al. 2012). Unfortunately, data from

planned broad-scale surveys that can be used to generate

this information are often lacking (Isaac et al. 2014). To

address this shortcoming, ecologists have increasingly

turned to the public for the collection of species occur-

rence and habitat data (Silvertown 2009).

The increasing involvement of citizens from the non-

scientific community (hereafter, citizens) in research (citi-

zen science) has transformed how large-scale environmen-

tal monitoring and research programmes are conducted

(Conrad & Hilchey 2011). Citizens now gather data for

an array of projects that would otherwise be difficult, if

not impossible, to obtain due to time and resource limita-

tions (Dickinson, Zuckerberg & Bonter 2010). In addition
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to providing data, citizen science may increase positive

public engagement with scientific research and natural

resource issues (Devictor, Whittaker & Beltrame 2010;

Dickinson, Zuckerberg & Bonter 2010).

It is now a common practice to use data collected by

citizens to model the distribution, abundance and species

richness of plants and animals (Pearce & Boyce 2006; Sil-

vertown 2009; Dickinson et al. 2012). This trend has

likely arisen from the proven ability of citizens to collect

large amounts of observations across broad spatial scales

(Devictor, Whittaker & Beltrame 2010; Hochachka et al.

2012) and the relative ease with which species distribution

and habitat models can be generated (Phillips, Anderson

& Schapire 2006).

While opportunistic, citizen-collected, presence-only

data have proven valuable (Elith et al. 2006), there are a

number of potential issues that have been identified when

using this type of data to model species distributions. Citi-

zen-generated data often can lack records of species

absences (Isaac & Pocock 2015). Although absences can

sometimes be inferred from species lists (i.e. birds and

butterflies), detection of species with few ecologically and

physiologically similar conspecifics is rarely recorded in

lists. In situations where absences cannot be inferred, only

measures of relative suitability probability can typically be

modelled (Hastie & Fithian 2013). Opportunistic, citizen-

collected, presence-only data may also suffer from quality

issues and sample selection biases, where some sites are

more likely to be surveyed than others (e.g. road bias;

Phillips et al. 2009). Sample selection bias can arise due

to spatial or geographic constraints on citizens’ sampling,

where citizens disproportionally collect from areas that

are convenient and highly accessible (Dennis, Sparks &

Hardy 1999; Phillips & Dudik 2008; van Strien, van

Swaay & Termaat 2013). Citizens appear more likely to

sample areas closer to where they live and to under sam-

ple remote regions (Dennis, Sparks & Hardy 1999; Isaac

& Pocock 2015). Opportunistic data are also likely to

have road bias with more detections close to roads and

trails (Crall et al. 2010). Large numbers of background

samples or ‘pseudo-absences’ can reduce the influence of

sample selection bias in presence-only data (Barbet-Mas-

sin et al. 2012), but these biases have a much stronger

effect on presence-only models than for models that use

confirmed absences (Phillips et al. 2009). From a quality

perspective, there is concern that citizens – unlike profes-

sionals – do not have the ability or expertise to find or

identify (detect) species of interest (Fitzpatrick et al. 2009;

Silvertown 2009). The quality of citizen-generated data

may also suffer if citizens are asked to provide data that

do not align with their interests and skills (Lukyanenko,

Parsons & Wiersma 2014).

One approach to improve data quality and reduce sam-

ple selection bias may be using volunteers that are trained

professionals to collect data. Professionals should be more

invested in projects’ outcomes and due to their training,

familiarity with data, and use of protected and restricted

lands, they may be more likely to survey remote areas

and away from roads. They may also be better able to

identify and detect rare animals. Accordingly, limiting

data collection to professional volunteers has the potential

to reduce sampling bias near roads and areas of high pop-

ulation density and may reduce issues of species detection

and misidentification. Alternatively, from a modelling per-

spective, incorporating road biases as a covariate into

models (Warton, Renner & Ramp 2013) and aggregating

records on coarser scales may reduce some sample biases

(Elith et al. 2011; Fourcade et al. 2014). However, aggre-

gating records is to risk throwing out a portion of the

data collected or not using all the information from place-

based records (Isaac & Pocock 2015). The loss of data is

troubling because the large samples produced by citizens

may increase the predictive performance of some models

(e.g. Hernandez et al. 2006), allowing researchers to over-

come sample biases.

There are outstanding questions about the use of

opportunistic species observations in species distribution

models, and there is a clear need to find better ways to

turn the large quantities of citizen-generated data into

useful information (Hochachka et al. 2012; Isaac et al.

2014; Isaac & Pocock 2015). To realize the potential of

citizens to generate the data needed to produce broad-

scale species distribution maps (Phillips & Dudik 2008;

Devictor, Whittaker & Beltrame 2010; Hochachka et al.

2012), there is a need to understand and minimize the

potential for sample selection bias and data quality issues

on model performance. This is only possible through a

rigorous model assessment and validation. Nonetheless,

distribution models are rarely evaluated with independent

data and the use of planned field surveys (i.e. prospective

sampling; Fielding & Bell 1997) to determine model valid-

ity is even less common (Elith et al. 2006). More specifi-

cally, the assessment of citizen science-generated models

with independent data is almost non-existent (but see

Kadoya et al. 2009) and particularly troublesome given

their considerable potential for sample selection bias.

To quantify the influences of potential sample selection

bias and evaluate the performance of models created with

opportunistic observations from citizens, we used the fox

squirrel Sciurus niger in the state of Florida as an illustra-

tive case study. Information on the spatial ecology (distri-

bution and habitat utilization) of Florida’s fox squirrels is

critical to their management and conservation (Florida

Fish and Wildlife Conservation Commission [FWC]

2013). However, statewide locational information on the

fox squirrel has been unavailable because systematically

sampling throughout Florida (170 304 km2) has not been

a viable option.

Our goal was to understand and account for sample

selection biases in opportunistic citizen collated data to

generate a reliable distribution map of the fox squirrel in

Florida. Our specific objectives were to (i) compare pre-

dictive models produced from opportunistic observations

from professionals and citizens; (ii) compare the potential
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sample selection bias of citizen vs. professionally collected

data; (iii) understand the influence of roads on data acqui-

sition and model performance; and (iv) determine whether

data from professionals and citizens altered the interpreta-

tion of environmental relationships of fox squirrel across

the state of Florida.

Materials and methods

STUDY SPECIES

The fox squirrel is a mid-large sized (800–1200 g) tree squirrel

that occurs naturally throughout most of the south-eastern and

mid-western USA (Steele & Koprowski 2001). In the south-east-

ern USA, fox squirrels are thought to be experiencing declines in

abundance and distribution due to habitat loss from land conver-

sion and fire suppression (Weigl et al. 1989; Loeb & Moncrief

1993). Florida has four fox squirrel subspecies (Sherman’s

[S. n. shermani], Big Cypress [S. n. avicennia], Bachman’s

[S. n. bachmani] and the south-eastern [S. n. niger]). Both Sher-

man’s and Big Cypress fox squirrels, whose combined distribu-

tion covers most of peninsular Florida, are rare, difficult to

detect (Eisenberg et al. 2011) and listed as Species of Conserva-

tion Concern by the state of Florida (Florida Fish and Wildlife

Conservation Commission 2012). All four of these subspecies

appear to have sparse and patchy distributions across a broad

array of habitats (Loeb & Moncrief 1993). However, once

detected they are easily recognizable and distinguishable from

other species of squirrel due to their unique coloration (Tye et al.

2015).

WEBSITE AND DATA COLLECTION

We developed a web-based tool (webpage; https://public.myfwc.-

com/hsc/foxsquirrel/GetLatLong.aspx) to allow natural resource

professionals and the general public (citizens) to submit sightings

of fox squirrels in Florida. We relied solely on volunteers to col-

lect data for this project because their intrinsic motivations have

been liked to increased effort and participation and effort in col-

lective scientific research programmes (Nov, Arazy & Anderson

2011). We promoted the site to professionals by sending agency

wide (e.g. Florida Fish and Wildlife Conservation Commission,

Florida State Parks) and targeted emails (e.g. Big Cypress

National Preserve, St. Marks National Wildlife Refuge), posting

flyers in offices of natural resources agencies and promoting the

website at local natural resources conferences and workshops. We

promoted the site to the public at extension events (e.g. Florida

Black Bear & Wildlife Conservation Festival), meetings of conser-

vation organization (e.g. Audubon clubs) and through local

newspapers (e.g. Tampa, Sarasota, Gainesville and Orlando) and

newsletters (e.g. Florida Cattlemen Association, Florida Master

Naturalist). Finally, we used our social and professional networks

to promote the website via Facebook.

The web-based tool recorded georeferenced locations (latitude

and longitude in decimal degrees) using a Google map applica-

tion to record sightings in the data base. Along with the geo-

referenced fox squirrel locations, we asked each participant to

enter their name, date of the sighting, organization (if applicable)

and email address. Additionally, we asked participants whether

they were a member of the general public or a natural resource

professional (biologist, natural resource extension, forester, land

manager, etc.). A comments box allowed participants to enter

further sighting information such as surrounding land use, beha-

viour and individual description. We also encouraged participants

to provide pictures of fox squirrels to confirm the validity of their

sightings. We activated the website from 20 August 2011 to 1

April 2012 to coincide with peak fox squirrel activities during

pine (Pinus spp.) and oak (Quercus spp.) masting events (Weigl

et al. 1989). To eliminate erroneous squirrel locations from the

survey, we reviewed each location and removed locations that

appeared to be from user error (i.e. locations in the middle of a

water body). Questionable points were verified or removed after

we gathered more information from the participant that submit-

ted the data.

ENVIRONMENTAL VARIABLES

We fit distribution models to a suite of environmental variables

that we expected would influence the fox squirrels’ distribution.

We assessed the strength of the relationship between our vari-

ables using the correlation coefficient (r), and defined variables

>0�7 as being highly correlated. For most variables, we trans-

formed the grain size to 30 9 30 m pixels and generated a sum

or average for each pixel based on a 25-ha neighbourhood, the

average home range of fox squirrels in Florida (Kantola & Hum-

phrey 1990). We removed duplicate squirrel locations within the

same 30 9 30 m pixel area. We generated pixel averages using

focal statistics in Spatial Analyst ArcMap 10 (Environmental Sys-

tems Research Institute, Redlands, CA, USA). To determine the

average (treeA) and standard deviation (treeSTD) of tree canopy

cover in area surrounding an observation, we used the 2011

National Land Cover Database (Homer et al. 2015). We esti-

mated the majority land cover type (LC_maj) surrounding each

squirrel location by classifying the Florida Natural Areas Inven-

tory (FNAI 2012) land covers into 19 relevant categories (see

Appendix S1 in Supporting Information). To generate estimates

of edge, we considered the intersection of land cover types as

edges and summed the amount of edge (sumedge) available to a

fox squirrel (25 ha neighbourhood). We estimated the amount of

forest available (forest_patch) to a fox squirrel in the surrounding

environment by summing all the area of forest land covers within

25 ha of the squirrel location. However, forest_patch was highly

correlated with treeA (r = 0�80), so we did not include forest_-

patch in the analysis. We quantified the elevation at each location

using the 2005 US. Geological Survey National Elevation Dataset

(NED) for the state of Florida. Finally, to account for potential

road sample bias, we incorporated a nuisance variable that esti-

mated the distance from each squirrel location to the nearest

roadway (roadbias) using the US. Census Bureau’s Florida 2013

Topologically Integrated Geographic Encoding and Referencing

(TIGER) data layer.

DISTRIBUTION MODELLING

To address the objectives of the study, we developed models from

four data sets of observations: (i) citizen and professional obser-

vations combined; (ii) citizen observations only; (iii) professionals

observations only; and (iv) a subset of the citizen observations

equivalent in size to the professional data set. For each of these

data sets, we ran models with four different configurations to

account for potential sample selection biases in the data. We
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created models that included a covariate to account for road bias

(Warton, Renner & Ramp 2013), a subsampling grid that ran-

domly selected one detection within each 25-ha grid cell (Four-

cade et al. 2014), both a covariate for roads and a subsampling

grid and no added spatial adjustments. Using these 16 different

data/configuration combinations, we modelled fox squirrel distri-

bution as a function of environmental variables across Florida

utilizing the maximum entropy program Maxent (version 3.3.3k,

http://www.cs.princeton.edu/~schapire/maxent/), called through

the dismo package in R. We fit models using only linear and

quadratic relationships in an effort to not overfit our data

(Merow, Smith & Silander 2013) and to add in biological inter-

pretation. Additionally, we altered the tuning parameter to adjust

for model complexity (b = 1–20). We set Maxent to randomly

generate 10 000 background points to allow for the distribution

analysis (Barbet-Massin et al. 2012). We used these same back-

ground points for each model assessment to allow formal com-

parison between models (Merow, Smith & Silander 2013). To

compare variation in predicted environmental relationships, we

used a nonparametric bootstrap (n = 500 samples) to generate

partial predictions for each environmental variable and its associ-

ated uncertainty. To determine the relative importance of vari-

ables contributing to the Maxent models, we used a jackknife

procedure based on five sets of simulations (Phillips et al. 2009).

To ensure that our conservative modelling approach did not limit

the overall predictive ability of our models, we also ran all of our

models using the hinge and threshold features in Maxent that

allows for more complex relationships to be modelled, but con-

clusions did not change.

INDEPENDENT FIELD VALIDATION

We conducted field surveys for fox squirrels using passive camera

traps to collect independent data for validation of Maxent mod-

els. Typically, species distribution models are validated using

variants of cross-validation; however, such assessments are not

based on truly independent data (Fielding & Bell 1997; McCarthy

et al. 2012) and can provide misleading inferences (and unwar-

ranted optimism; Ara�ujo et al. 2005) on the predictive ability of

models. We conducted our surveys within the core range of Sher-

man’s fox squirrels in central and northern Florida on public and

private lands (Fig. 1). The vegetative communities at our sites

were highly variable, and included open grasslands, pine-domi-

nated forests, hardwood-dominated forests, mixed pine–hard-

woods, bottomland forest and clear cuts. The canopy trees

varied, but the dominant pine trees included longleaf P. palustris,

slash P. elliottii and loblolly P. taeda pines, and the dominant

oaks were turkey (Quercus laevis, live Q. virginiana, laurel Q. lau-

rifolia and water Q. nigra oaks). Vegetation management prac-

tices included cattle grazing, timber production, mowing, burning

and no active management.

For prospective sampling, we used a stratified random design

to selected 14 points in each of three strata (high > 0�60, medium

0�30–0�59 and low probability of occurrence ≤0�29) based on

Maxent models (described above). Additionally, we selected forty

7�65 km2 landscapes across the study region. We selected land-

scapes using a stratified random design to capture major vegeta-

tive communities in the region. We placed 10 grids in upland

pine habitats, 10 in mesic pine and hardwood communities and

placed the remaining 20 without regard to a vegetative commu-

nity. Within each landscape, we randomly placed five 5�3-ha

survey grids. Each grid consisted of 9 sampling points in a 3 9 3

grid arrangement with 115 m spacing. For this analysis, to reduce

spatial autocorrelation we randomly selected a subset of 252

points (84 in each strata) giving a total of 294 points to be used

for validation. We surveyed each sampling point for at least eight

nights from 1 January to 1 June in 2013 and 2014, with a passive

digital camera (Bushnell Trophy Cam model 119436c, Bushnell

Outdoor Products, Overland Park, KS). We placed baits of

pecans Carya illinoinensis and cracked corn Zea mays 2�5 m from

the camera.

MODEL PERFORMANCE

We first evaluated potential road bias and the spatial occurrence

location from both citizen and professionals. We compared envi-

ronmental covariates at locations for data collected by citizens

and professionals to determine whether these data sources were

capturing different environmental gradients using MANOVA, and

determined key environmental covariates that may explain differ-

ences with a subsequent linear discriminant analysis (McCarthy

et al. 2012). We also determined whether data collected by citi-

zens and professionals as a function of distance from roads dif-

fered from availability based on background point locations.

We assessed the ability of all 16 models to predict occurrence

at our independent field validation locations using two threshold

independent measures, Area under the curve (AUC) and the cor-

relation coefficient (r). The AUC of the receiver-operating charac-

teristic (ROC) plot is a measure of overall predictive accuracy

ranging from 0 to 1�0, where 1 is accurate and a 0�5 represents

random chance (Fielding & Bell 1997). We also used two thresh-

old-dependent measures – the true skill statistic (TSS) and the

kappa statistic (Fielding & Bell 1997; Liu, White & Newell 2011).

For TSS and kappa, we set a threshold cut-off based on maxi-

mizing the sum of the specificity and sensitivity (Liu, White &

Newell 2013).

Results

Our web survey totalled 4222 vetted locations of fox squir-

rels in 66 of 67 counties in Florida (no reports were received

from Broward County) from 2673 different people (Fig. 1).

Of the locations recorded, 73% were from citizens and the

remaining 27% were submitted by natural resource profes-

sionals. We removed 67 points from further analysis

because they occurred on the edge of two layers.

There were clear differences in the spatial coverage of

fox squirrel observations from professionals and citizens

(P < 0�0001; Fig. 2a). Compared to professionals, citizens

were more likely to sample fox squirrels in urban areas

and less likely to sample them in remote prairies and for-

ests (Figs 1 and 2a). Similarly, professionals and citizens

differed spatially on their observation with respect to

roads (P < 0�0001; Fig. 2b). Both groups concentrate their

sampling <50 m from a road with under sampled areas

>200 m from roads. Unlike professional observations, citi-

zen-collected data also appeared to spike again 100 m

from a road (Fig. 2b).

Despite the differences in the coverage of data sets,

there were only negligible differences (AUC < 0�015,
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r < 0�013, TSS < 0�08, j < 0�08) in model performance

among the four different sources of data (citizen and pro-

fessional, citizen only, professionals only, and a subset of

citizens) with the three configurations aimed at reducing

sample bias (road bias, grid, grid and road bias, and no

adjustments, Table 1.). Using the AUC metric for valida-

tion, professionally collected data consistently, but only

negligibly, outperformed citizen-collected data. Alterna-

tively, on average the data collected by citizens showed

only negligibly better performance than professionally col-

lected data, based on r, TSS and Kappa statistics

(Table 1). Additionally, we found using the hinge and

threshold features in Maxent did not improve our model’s

predictive ability.

The sample size variation within this study had little

influence on overall model performance. The differences

between citizen-collected data (n = 3101) and a subsample

of this data equivalent to the number of professional

observations (n = 1121) were negligible (Table 1). Addi-

tionally, models using the smaller samples of observations

from professionals were comparable to models using the

larger samples from citizen-generated observations

(n = 3101). On average, both data aggregation and adding

a covariate to correct for road bias increased three of the

four validation metrics, but only marginally (Table 1).

Overall, the different data sources generated similar

environmental relationships (Fig. 4) and the importance

of environmental predictors was similar between models.

The distribution of fox squirrels across Florida from

similar citizen and professional models (subsampled, not

adjusted for road bias) had similar predictive accuracy

and fox squirrel distribution responded similarly to envi-

ronmental variables (Figs 4 and 5). Based on jackknifing,

the rank order of variable importance for the best profes-

sional model was as follows: land cover > SD of tree

cover > elevation > tree cover > edge. For citizen data,

the rank order of variable importance was as follows:

land cover > tree cover > SD of tree cover > eleva-

tion > edge. Models generated using both professional

and citizen data sources showed fox squirrels responded

positively to pinelands and negatively to coastal uplands,

high-intensity urban areas, extractive uses, prairies and

water, and hardwood wetlands and mangroves (Fig. 3).

Models generated with citizen data suggested fox squirrels

responded positively to low-intensity urban areas and

parks, cemeteries and golf courses, while models with data

from professionals did not (Figs 3 and 5). Fox squirrel

occurrence also increased with variability in tree cover

and decreased with overall increasing canopy cover from

trees (Fig. 4). Fox squirrel occurrence decreased at the

lowest elevations (<20 m) and highest elevations (>60 m)

and responded negatively in increasing amounts of edge.

Discussion

Citizen science is increasingly used in ecology and con-

servation, yet there are ongoing concerns regarding the

value of such data (Kery, Gardner & Monnerat 2010;

Fig. 1. Study area for distribution mod-

elling of fox squirrels, including presence

locations from professional data, citizen

data and validation locations.
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Isaac et al. 2014). Our results provide new insight to this

issue by illustrating that while citizen science data show

sample selection bias, such bias does not result in lower

predictive ability of models relative to data collected by

professionals.

Our web-based survey yielded a large amount of data

on fox squirrel occurrence from throughout Florida

(Fig. 1) in a relatively short time (194 days). Citizens

reported the majority of these data and submitted the

only observations for three counties. Generating this

amount of data would have taken an extraordinary effort

in the field and the web-based survey was a vast improve-

ment over the previous approach of using mail surveys to

document fox squirrel occurrences in Florida (Williams &

Humphrey 1979; Eisenberg et al. 2011).

We tried to enhance the quality of our data by calling

on natural resource professionals to volunteer, but data

from professionals and citizens alike had considerable

sample selection biases. Both groups had disproportion-

ally more observations of squirrels close to roads, and

there is no evidence that fox squirrels select for these

areas (Steele & Koprowski 2001). Road biases have been

shown to be a consistent problem with opportunistically

collected data (Kadmon, Farber & Danin 2004; Grand

et al. 2007; Albert et al. 2010). The proportion of fox

squirrel observations closer to roads was more pro-

nounced for citizens, where there were two peaks of citi-

zen observations adjacent to (<50 m) and just removed

from roads (�100 m; Fig. 2b). This second peak may be

from a citizen’s observations at places they frequent. Our

data clearly showed a difference in the land cover extent

of citizen data (Fig. 2a) which produced models predict-

ing greater occurrence of fox squirrels in low-intensity

urban areas, golf courses and parks more than models

derived from professional data (Figs 3 and 5).

Surprisingly, when comparing model predictions to

independent planned surveys, efforts to reduce bias pro-

duced only slight improvements in overall model perfor-

mance (Table 1). Despite the considerable road biases in

observations, explicitly modelling this variation with a

covariate did not improve overall performance as in previ-

ous studies (Warton, Renner & Ramp 2013). A consider-

able portion of Florida’s available land occurs <250 m of

a road, so all data sets may have captured at least some

observations across environmental gradients (see also

McCarthy et al. 2012), even though data sets varied in

capturing the frequency of these gradients (Fig. 2a). Also

contradicting previous work, we found the larger samples

sizes did not measurably improve model performance

(Hernandez et al. 2006). This result may be because our

observations were concentrated in certain areas of the

state, rendering the increased sample from citizens of little

value. In fact, aggregating sampling into 25-ha grids

reduced the number of citizen-generated samples by

approximately 30%.

One potential benefit of using professionals along with

citizens to collect data was that they sampled in slightly

different areas and more remote areas (Figs 1 and 2a).

Nonetheless, models created using professionally collected

data did not perform better than models using citizen

data. Citizens did not appear to have identification issues

that might have influenced data quality. We received over

400 pictures of fox squirrels from citizens with no

misidentification. While a portion of our validation points

were specifically stratified according to Maxent predic-

tions, some of the validation points were stratified across

forest types thought to be habitat for fox squirrels. Conse-

quently, the different land cover extent of professional

observations more closely matched land cover at our inde-

pendent validation points. Our validation points generally

occurred in areas of reduced human activity. It is possible

that if our validation points were collected in areas with

more urbanization, the citizen data could have outper-

formed the professional data (Fig. 1). Alternatively, citi-

zen observations in urban areas may have suffered from

sample selection bias because more people frequent these

areas. Further assessments using independent sampling

across the entire land cover and geographic gradient con-

sidered by citizens would be useful.

Fig. 2. (a) Differences in environmental space (not including

roads) of professional and citizen data based on predicted scores

of linear discriminant analysis and (b) road bias. For linear dis-

criminant analysis, differences were driven by land cover types,

not tree cover, elevation or edge, where negative loadings on lin-

ear discriminant function 1 (LD1) were associated with dry

prairie and barren land covers, while positive loadings were asso-

ciated with coastal uplands, mangroves and exotics. In (b), avail-

able refers to background sample used for model building.
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In contrast to previous work showing improved predic-

tive ability from aggregating point-based occurrences into

large grids cell (Fourcade et al. 2014), our results suggest

that at best aggregating point-based occurrences into grid-

ded cells produces only trivial improvements in model

prediction. Unlike other studies that commonly used

larger cells (≥1 km2) for aggregation (Warton, Renner &

Ramp 2013; Isaac et al. 2014), we selected smaller (25 ha)

biologically relevant cells (average fox squirrel home

range). Larger aggregations might have reduced more of

the sample selection bias and increased the model’s pre-

dictability, but this broader scale would have limited our

ability to observe species’ responses to the environment

on the most biologically relevant scales.

The data produced from our survey did not include the

absences commonly used for species distribution models.

While it is possible to infer absences from species lists and

to explicitly model the probability of detection along with

the factors that may influence it (Kery, Gardner & Mon-

nerat 2010; Hochachka et al. 2012; van Strien, van Swaay

& Termaat 2013), this approach is impractical for many

species of conservation interest (e.g. carnivores, reptiles,

marine mammals). Imperilled species such as Florida’s fox

squirrel are often found in low densities, have large

ranges, and lack similarly sized conspecifics making it dif-

ficult and unrealistic to infer detection from species lists.

As predictors of relative fox squirrel activity, we found

our best models provided useful ecological information

about the factors that shape the fox squirrels’ distribution.

From our validation data, we found that when model

probabilities were <0�4 we found few or no squirrels on

validation plots (�0�05) and when modelled probabilities

were >0�4 the probability of squirrel presence on valida-

tion plots was �0�3. Fox squirrels occurred widely

throughout Florida and were recorded in a variety of land

cover types, but the highest levels of activity occurred in

open pinelands (Fig. 3). Fox squirrels are believed to have

evolved in savanna habitats and on the borders of the for-

est and prairie ecosystems (Steele & Koprowski 2001).

Table 1. Evaluation of fox squirrel Maxent models based on citizen science data, professional data or both data sets combined (all),

when predicting to independent, prospective sampling locations. Models considered potential road bias using a distance to road covari-

ate, as well as general sample bias by subsampling data based on a 25-ha grid. For each bias combination, models with the highest area

under the curve (AUC) statistic, correlation coefficient (r), true skill Statistic (TSS), and kappa statistic are in bold. Across all model

combinations, models with highest AUC, r, TSS and kappa are in italics and bold

Data used

Sample selection bias considered?

b* AUC r TSS jRoad Sample (subsampling)

All No No 12 0�735 0�299 0�445 0�216
Professional No No 15 0�740 0�301 0�412 0�244
Citizen No No 15 0�733 0�299 0�459 0�226
Citizen (N = Prof) No No 15 0�730 0�296 0�466 0�246
All Yes No 12 0�737 0�305 0�459 0�226
Professional Yes No 15 0�738 0�296 0�422 0�199
Citizen Yes No 20 0�735 0�308 0�475 0�254
Citizen (N = Prof) Yes No 15 0�732 0�308 0�466 0�246
All No Yes 12 0�739 0�302 0�464 0�199
Professional No Yes 12 0�744 0�307 0�440 0�176
Citizen No Yes 20 0�735 0�300 0�464 0�218
Citizen (N = Prof) No Yes 15 0�728 0�300 0�462 0�220
All Yes Yes 12 0�739 0�306 0�459 0�218
Professional Yes Yes 15 0�740 0�303 0�459 0�192
Citizen Yes Yes 20 0�735 0�308 0�466 0�242
Citizen (N = Prof) Yes Yes 15 0�732 0�312 0�490 0�237

*Best b-value, based on AUC (b considered = 1, 3, 6, 9, 12, 15, 20).

Fig. 3. Partial relationships from best models for professional

and citizen data for land cover. Models based on subsampling to

reduce bias, and uncertainty (95% CI) taken from a nonparamet-

ric bootstrap (n = 500 samples).
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This might explain why fox squirrels avoided areas with a

closed tree canopy and were more active in areas with a

heterogeneous forest canopy (Fig. 4), indicative of the

Florida’s once vast pine savannas (Myers & Ewel 1990).

This evolutionary history might also explain squirrel

prevalence in areas of low-intensity development. These

areas often have a broken canopy, open understorey and

savanna-like vegetation structure (McCleery et al. 2012).

Additionally, fox squirrels may benefit from the supple-

mental food, ornamental trees and well-watered landscap-

ing in areas of low-level development (Jodice &

Humphrey 1992; McCleery et al. 2007) that appear to

have potential for fox squirrel conservation, as long as

they do not replace natural pinelands or become more

intensely urbanized (Fig. 3).

Citizens have an unmatched and growing (i.e. cell

phone, GPS, cameras) ability to collect occurrence data

across broad geographic areas, yet turning these data into

useful information can be challenging. Using biased data

and presence-only modelling, we were able to turn oppor-

tunistic data into important ecological information on the

factors influencing the distribution of fox squirrels in

Florida. Yet these models had only moderate predictive

accuracy when validating against data from independent

Fig. 4. Partial relationships (a) for tree

cover, (b) SD of tree cover, (c) Elevation,

and (d) edge from best models for profes-

sional data (solid line/light grey CI) and

citizen data (dashed/dark grey CI). Models

based on subsampling to reduce bias, and

uncertainty (95% CI) taken from a non-

parametric bootstrap (n = 500 samples).

Fig. 5. Predictions from models collected with (a) professionals and (b) citizens, and (c) the difference in predictions between profession-

als and citizens. [Colour figure can be viewed at wileyonlinelibrary.com].
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planned field surveys (Table 1). Moderate accuracy of dis-

tribution models has been observed in other situations

where truly independent data are used for validation (e.g.

McCarthy et al. 2012), such that it is unclear whether rel-

atively low performance is from the use of volunteers or

the rigorous application of an independent prospective

sampling validation set.

For this study, data quality might have been improved

if we required participants to zoom to a standard resolu-

tion when using the web tool to identify squirrel loca-

tions. However, placing constraints on volunteers has

been shown to reduce the overall accuracy of citizen

science projects (Lukyanenko, Parsons & Wiersma 2014).

Similarly, because more data did not improve model per-

formance, future efforts might consider using fewer citi-

zens to collect presence/absence data in specific areas if

the difficulty and constraints of this sampling do not

jeopardize data quality (Lukyanenko, Parsons &

Wiersma 2014). One potential way to improve the pre-

dictive accuracy of citizen-generated distribution models

may be to integrate it with expert knowledge within a

statistical framework (Drew & Perera 2011). Another

avenue to enhance the predictive ability of opportunistic

data is to model it in conjunction with planned pres-

ence–absence surveys. Modelling these two data sources

together has been shown to generate more highly predic-

tive distribution models than using the data sets by

themselves (Fletcher et al. 2015). It precisely these types

of synergies between citizens and professionals that are

necessary to generate the information needed to develop

conservation strategies for the planet’s growing biodiver-

sity crisis.
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