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In savannas across the planet, encroaching woody plants are altering ecosystem
functions and reshaping communities. Seed predation by rodents may serve to
slow the encroachment of woody plants in grasslands and savannas. Our goals for
this study were to determine if rodents in an African savanna selectively removed
seeds of an encroaching plant and if foraging activity was influenced by the local
vegetation structure or by the landscape context. From trials with two species of
seeds (encroacher = Dichrostachys cinerea, non-encroaching overstory tree = Senegalia
nigrescens) at 64 seed stations, we recorded 1,065 foraging events by seven
species of granivorous rodents. We found a strong positive relationship between
rodent activity and the number of seeds removed during trials. Foraging events were
dominated by rodent seed predators, with <10.6% of events involving a rodent
with the potential for secondary dispersal. Rodents selectively removed the seeds
of the encroaching species, removing 32.6% more D. cinerea seeds compared to
S. nigrescens. Additionally, rodent activity and the number of seeds removed increased
at sites with more grass biomass. Our results suggest a potential mechanistic role for
rodents in mitigating the spread of woody plants in grass dominated savannas.

Keywords: ecosystem service, Eswatini, foraging, Dichrostachys cinerea, Senegalia nigrescens

INTRODUCTION

Globally, savannas are experiencing an increase in woody vegetation, known as woody
encroachment (Stevens et al., 2016a,b). Savannas are characterized by a coexistence of trees and
grasses, with woody vegetation historically limited by rainfall, fire, herbivory, and competition with
grasses (Bond, 2008; Lehmann et al., 2014; Staver and Bond, 2014). However, in the last century,
tropical savannas in Africa, South America, and Australia (Stevens et al., 2016b) have seen an
increased in abundance of woody plants due to poorly understood and interacting factors, such
as atmospheric carbon dioxide, fire regimes, and overgrazing (Sala and Maestre, 2014; Archer
et al., 2017). Encroachment, often dominated by a few native plant species, can alter vegetation
structure to shade out vegetation in the grassy layer (Scholes, 2003; Charles-Dominique et al., 2018).
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This structural and compositional change can alter the ecosystem
functions and services that savannas provide, such as altering
carbon storage, decreasing water availability, reducing biological
diversity, and disrupting socioeconomic conditions through
reduced grazing (Huxman et al., 2005; Soto-Shoender et al.,
2018). To maintain savannas and their beneficial services, it is
important to understand factors that can limit the establishment
of woody encroachers, particularly at the seed germination and
establishment stage.

One under-studied process that can limit woody plants during
the seed germination and establishment stage is post-dispersal
seed predation (Ostfeld et al., 1997; Vaz Ferreira et al., 2010).
Post-dispersal seed predation can influence the colonization,
distribution, and composition of plant communities (Hulme,
1997; Lindquist and Carroll, 2004; Zamora and Matías, 2014).
Compositional changes can occur when predators selectively
consume seeds of certain species over others (Meiners and Stiles,
1997; Orrock et al., 2006). One group of effective seed predators
that can reshape the structure of vegetation are granivorous
rodents (Davidson et al., 1984; Brown and Heske, 1990; Hulme,
1993). Rodents can mitigate populations of invasive and exotic
plants by predating their seeds (Parker et al., 2006; Pearson et al.,
2012) and may have the potential to slow woody encroachment
in savannas (Busch et al., 2011; Stanton et al., 2018). However,
there is minimal information on how rodents could limit the
establishment and spread of encroaching woody plants (Busch
et al., 2011; Bergstrom, 2013; Gordon et al., 2016).

Seed consumption by some rodents, other mammals, birds,
and insects, can increase the viability of seeds and disperse
them to new areas (Schupp, 1993; Miller, 1994b; Crawley,
2000). However, many non-caching granivorous rodents are
effective seed predators that destroy the seed upon consumption
(Ostfeld et al., 1997; Honek et al., 2009). The extent of
rodents’ predation and dispersal of seeds is likely a function of
environmental conditions. At a local scale, rodents’ movements
are shaped by vegetation structure, such as grass biomass and
shrub cover, which provide cover from predators (Hulme, 1993;
Monadjem, 1999a; Loggins et al., 2019b). While less pronounced,
rodent activity may also be influenced by different types and
configurations of surrounding landscapes (Nupp and Swihart,
2000; Orrock and Damschen, 2005; Ness and Morin, 2008).

Our goals for this study were to determine if rodents in
an African savanna selectively removed different woody seeds
and varied their activity with changes in local vegetation
structure or landscape context. Working in a shrub encroached
savanna embedded within a complex landscape matrix, we
predicted rodents would selectively remove seeds of a woody
encroacher (Dichrostachys cinerea). We predicted that the
nutritious D. cinerea herbivore-dispersed seeds would also be
highly palatable for rodents (Irie and Tsuyuzaki, 2011; Xiao and
Zhang, 2016) and selected (i.e., removed at a higher rate) over
a non-herbivore dispersed tree species (Senegalia nigrescens).
Additionally, we predicted that fine-scale habitat conditions
would have a greater influence on seed removal than the
surrounding landscape because of rodents’ strong behavioral
responses to local vegetation structure (Lima and Dill, 1990;
Loggins et al., 2019a).

MATERIALS AND METHODS

Study Area
We conducted our study in the subtropical savannas of
northeastern Eswatini. This region falls within the Maputaland-
Pondoland-Albany biodiversity hotspot, recognized for its high
endemism and biodiversity (Smith et al., 2008). A variety of
land uses in the region creates a mosaic landscape of irrigated
commercial monocultures and rain-fed subsistence agriculture,
grazing lands, and protected areas (Bailey et al., 2016; Reynolds
et al., 2018).

The native savanna vegetation in this area is characterized
by a continuous grass layer dominated by Themeda triandra
and Panicum maximum and interspersed with woody trees and
shrubs. The dominant canopy tree is S. nigrescens and the shrub
layer is dominated by D. cinerea. The woody shrub cover in the
region has increased steadily over the last 70 years, from 2%
to currently >40% (Roques et al., 2001; Sirami and Monadjem,
2011; McCleery et al., 2018; Stanton et al., 2020). The region
has mild, dry winters and hot, wet summers. We conducted
our study during the winter, June–July 2018, when average
temperatures range from 8 to 26◦C and the region receives
approximately 0–50 mm of its average 600 mm of annual rainfall
(Goudie and Price-Williams, 1983).

We conducted our experiments within the Mbuluzi Game
Reserve, Mlawula Nature Reserve, Hlane Royal National Park,
and the Inyoni Yami Swaziland Irrigation Scheme (IYSIS)
cattle ranch. These savannas were embedded within a land-
use matrix consisting of protected natural areas, cattle ranches,
subsistence agriculture, and intensive sugarcane plantations
(Monadjem and Garcelon, 2005; LaScaleia et al., 2018). Our
study sites host a variety of rodents with different feeding and
habitat preferences. The most common species at our sites
(Mastomys natalensis, Lemniscomys rosalia, Aethomys ineptus,
and Micaelamys namaquensis) have variable diets that include
seeds (Field, 1975; Kerley and Erasmus, 1991;Monadjem, 1997a,
1998; Chimimba and Linzey, 2008; Hagenah et al., 2009; Mulungu
et al., 2011). We have found no evidence suggesting these
widespread and well-studied rodents contribute to secondary
seed dispersal (Miller, 1994a; Skinner and Chimimba, 2005;
Scholtz, 2008; Happold, 2013; White and Midgley, 2021).
However, three less common granivorous species (Saccostomus
campestris, Steatomys pratensis, and Mus minutoides) on our
sites are known to eat seeds and cache food in their burrows
or nests (Hanney, 1965; Ellison, 1993; Hoole et al., 2017) and
may facilitate seed dispersal. However, caching by M. minutoides
has only recently been demonstrated in a laboratory setting and
S. campestris and S. pratensis often reduce their activity during
the austral winter (Kern, 1981; Korn, 1987; Monadjem, 1999b),
which is when we conducted this study because seeds from the
dominant woody plants are most abundant (Donaldson, 1993;
Hoffman, 2006).

Site Selection and Landscape Metrics
To understand the influence of the surrounding landscape on
the interaction between rodents and seed predation, we created
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FIGURE 1 | Map detailing the country of Eswatini (gray scale depicts elevation; darker gray is lower elevation) and our study area. Our study area is delineated in red,
and our sampling sites (gray circles) are overlayed on our classification of land-cover types.

a land-cover map from Google Earth Engine which included
savanna, agriculture, homestead, and open water (Reynolds
et al., 2018; Figure 1). We derived a value for each site
for compositional (the type and diversity of land cover) and
configurational (the shape and arrangement of land cover)
landscape heterogeneity (Gustafson, 1998). To derive these
measures, we used the raster and SDMTools packages in R
statistical software V 3.5.0 to implement a moving-window
analysis and identify gradients in landscape composition and
configuration based on variations in land cover (Zhang et al.,
2013; Tolessa et al., 2016, R Core Team, 2018). To capture areas
of savanna with a variety of surrounding landscapes, we set a
window with a 2 km radius and centered sampling landscapes
around cells surrounded by at least a 500 × 500 m buffer. Within
the 2 km buffer, we calculated two measures of compositional
heterogeneity (Shannon diversity index of land cover types
and land cover richness) and three measures of configuration
heterogeneity (total length of edge between land cover classes,
total number of patches, and patch cohesion and landscape
division) (Fahrig et al., 2011; Supplementary Table 1).

We used principal components analysis (PCA) from
the psych package to create two orthogonal components of
landscape heterogeneity, representing compositional, and
configurational heterogeneity (Revelle, 2014). We ranked cells
based on their PCA value for compositional and configurational
heterogeneity. Using stratified sampling, we then selected 16
sampling landscapes across gradients of compositional and
configurational heterogeneity.

We scored sites as low (<33%), medium (34–66%), or high
(>67%) compositional and configurational heterogeneity. We
stratified the 16 sites based on the following classifications:
high compositional and high configurational heterogeneity
(n = 3), high compositional and medium configurational
heterogeneity (n = 2), high compositional and low
configurational heterogeneity (n = 2), medium compositional
and medium configurational heterogeneity (n = 1), medium
compositional and low configurational heterogeneity (n = 2), low

compositional and high configurational heterogeneity (n = 2),
low compositional and medium configurational heterogeneity
(n = 2), and low compositional and low configurational
heterogeneity (n = 2).

Vegetation Structure
Our sampling sites were located within relatively open savanna
habitats (woody cover 25–40%). To quantify the vegetation
structure of the local environment (0.25-ha), we sampled three
50 m transects at each site. We ran two parallel transects at 10 m
distance from the center of the site, and a third perpendicular
transect through the center point. We measured grass biomass
with a disc pasture meter (DPM) every 5 m on each transect
(Bransby and Tainton, 1977). We averaged the measures and
used a previously calibrated estimate to generate an estimate
of biomass in kg/ha (Zambatis et al., 2006). We measured the
average canopy cover at each site by taking spherical densiometer
readings at every 5 m along each of the three transects and
we estimated shrub cover (woody cover <5 m) using the line
intercept method on each transect (Canfield, 1941).

Foraging Trials
We conducted foraging trials with seeds from the two dominant
woody species in our study area, S. nigrescens and D. cinerea
(family Fabaceae). They are both widespread in southern African
savannas (Palgrave and Palgrave, 2015). D. cinerea is a common
woody encroacher that relies on ingestion by non-rodent
herbivores (e.g., ungulates) for both dispersal and dormancy-
breaking (Van Staden et al., 1994; Miller, 1995; Dudley, 1999;
Tjelele et al., 2012, 2015). The seeds of D. cinerea are round
and ≈ 4 mm × 5 mm (Supplementary Figure 1). The pods are
nutritious and are eaten by large herbivores. S. nigrescens is a
canopy tree with disc-shaped seeds that form in a pod and are
dispersed through ballistic dispersal. The seeds of S. nigrescens
are ≈ 10 mm × 10 mm and flat (Supplementary Figure 1). These
larger seeds do not require herbivore-assisted dispersal to break
dormancy and are damaged if consumed (Miller, 1994b, 1995).
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At each sampling site (50 × 50 m plot, 0.25 ha) we established
four seed stations around the center of the site. We placed the
seed stations (30 cm diameter tray) halfway under shrubs to
increase foraging rates (Loggins et al., 2019b). Prior to trials,
we pre-baited trays for 24 h with oats and peanut butter. Then
we randomly assigned two seed stations to receive S. nigrescens
seeds (n = 40) and two to receive D. cinerea seeds (n = 60).
We obtained our seeds from Silverhill Seeds and Books1. We
used 50% more D. cinerea seeds than S. nigrescens seeds to
account for the former’s smaller mass and volume. We ran each
trial for 24 h and then collected and recorded the number of
intact seeds remaining. We classified seeds as remaining seeds
if they were scarred or damaged but had an intact cotyledon
that could potentially germinate (Bell and van Staden, 1993).
The small and hard seeds used in this study often shatter with
damage to the cotyledon; thus, to be conservative we considered
seeds with >25% damage to the cotyledon as removed (Barnes,
2001). For the next 24-h period, we switched seed species at
each station and ran the trial again. Finding no evidence that the
common seed predators (M. natalensis, L. rosalia, A. ineptus, and
M. namaquensis) contribute to secondary seed dispersal (Miller,
1994a; Skinner and Chimimba, 2005; Scholtz, 2008; Happold,
2013; White and Midgley, 2021), we assumed the seeds removed
by these species were predated. Alternatively, we acknowledged
that foraging by the less common M. minutoides, S. campestris,
and S. pratensis may have led to secondary dispersal.

Rodent Activity
To link seed predation to rodent activity, we monitored each
seed station with a short-focused camera [Spartan, model
SR1-IR(S100), Norcross, GA, United States]. We placed the
camera 55 cm above each seed station facing downwards
(Supplementary Figure 2). Seed trays were marked with a scale
bar to aid in identification of rodents using tail and body length
(McCleery et al., 2014). We set the motion-sensitive camera to
photo, three bursts, with a 5 s trigger interval. To calculate the
length of foraging bout we measured the duration of time each
individual rodent first and last appeared on camera, with new
bouts starting after 20 min of non-detection (Loggins et al.,
2019b). When multiple individuals of the same species appeared
on camera simultaneously, we noted a foraging bout for the
maximum number of individuals seen in the frame. We grouped
the ecologically similar A. ineptus and M. namaquensis as a single
species due to the difficulty of distinguishing them on camera;
however, the latter species is rarely captured away from rocky
outcrops in Eswatini (Monadjem, 1997b) and was therefore not
likely to be encountered in this study. All methods were approved
by the University of Florida’s Institutional Animal Care and Use
Committee (#201509045).

Statistical Analyses
Seed Selection
To determine if rodents selected one seed species over the other,
we modeled the proportion of seeds removed during each trial
as a function of the species of seed. We used proportions to

1http://www.silverhillseeds.co.za/

account for the different number of seeds used for each species.
We used a mixed effects model with each seed station as a random
effect and fitted to a binomial distribution using the lme4 package
for R (Bates et al., 2015). We considered the proportion of
seeds removed to be significantly different if the 95% confidence
intervals (CI) of β estimate for seed species did not include zero.

Variation in Seed Removal
To explain variation in seed removal for each species separately,
we used the raw count of the number of seeds remaining at each
tray. For each species, we considered variation as a function of
factors at two different scales, the local scale (vegetation structure
at the 0.25 ha scale) and the landscape scale (land use composition
and configuration at the 2 km scale). We developed seven a priori
models to explain differences in the number D. cinerea and
S. nigrescens seeds remaining. We included models with only
one fixed variable (canopy cover, shrub cover, grass biomass,
compositional heterogeneity, and configurational heterogeneity),
as well as global and null models (Table 1). We fitted generalized
linear mixed models using a generalized Poisson distribution and
site as a random effect using the glmmTMB package in R (Brooks
et al., 2017). We evaluated model fit using Akaike’s information

TABLE 1 | Degrees of freedom (DF), Akaike’s information criterion corrected for
small sample size (AICc), difference in AIC scores (1AICc), and AICc weight
(AICcwt) of models to explain differences in the numbers of Dichrostachys cinerea
seeds remaining at seed trays (a), the number of Senegalia nigrescens seeds
remaining at seed trays (b) and the total time (i.e., number of minutes) rodents
foraged at each seed station (c).

Model DF AICc 1AICc AICcwt

(a) Number of D. cinerea seeds remaining

Grass biomass 4 386.2 0 0.868

Compositional heterogeneity 4 392.4 6.20 0.039

Null 3 392.8 6.57 0.032

Canopy cover 4 394.1 7.85 0.017

Global 8 394.2 7.97 0.016

Configurational heterogeneity 4 394.2 7.98 0.016

Shrub cover 4 395.0 8.74 0.011

(b) Number of S. nigrescens seeds remaining

Grass biomass 4 435.6 0 0.274

Null 3 435.8 0.20 0.248

Shrub cover 4 436.7 1.10 0.158

Configurational heterogeneity 4 437.4 1.73 0.115

Canopy cover 4 437.6 1.93 0.104

Compositional heterogeneity 4 438.1 2.48 0.079

Global 8 440.7 5.03 0.022

(c) Number of minutes foraging

Grass biomass 4 721.8 0 0.672

Null 3 725.6 3.85 0.098

Compositional heterogeneity 4 726.1 4.38 0.075

Configurational heterogeneity 4 726.4 4.68 0.065

Shrub cover 4 727.4 5.63 0.040

Canopy cover 4 727.4 5.66 0.040

Global 8 730.1 8.32 0.010

Models for each seed species included individual fixed variables, a global model
with all variables, and a null model.
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criterion (AICc) corrected for small sample size. We considered
models with AICc scores lower than the null model and within
four AICc units of the best model to be competing models
(Burnham and Anderson, 2002). We considered parameters
from competing models to be significant if their 95% CIs did
not include zero.

Rodent Activity
To link rodent activity to overall seed removal (i.e., both species),
we related the proportion of seeds removed during each trial
to the total number of minutes that rodents foraged at each
tray. Using both species, we modeled the proportion of seeds
removed during each trial as a function of rodent activity with
a mixed effects model fitted to a binomial distribution with seed
station as random effect. In addition to examining 95% CIs,
we evaluated the strength of the relationship by calculating the
marginal pseudo-R2 using the sjstats package (Lüdecke, 2021).
Next, to determine if activity varied as a function of the species of
seed, we modeled the foraging activity during each trial (i.e., total
number of minutes of rodent activity). We correlated these count
data with the seed species used during the trial using a generalized
Poisson distribution and seed station as the random effect.
Finally, to determine if rodent activity varied with environmental
factors in a manner that reflected variation in measures of seed
removal, we fitted generalized linear mixed models to rodent
activity using a generalized Poisson distribution and site as a
random effect to the same seven models (Table 1) and assessed
model parsimony and significance as described above.

RESULTS

We recorded 1,065 foraging events by seven species of
granivorous rodents during seed experiments that were
conducted from June 23–July 26, 2018 (Supplementary
Table 2). The rodents most frequently detected at the seed
stations were the seed predators M. natalensis (39.0%, n = 415),
A. ineptus/M. namaquensis (25.4%, n = 270), and L. rosalia
(25.1%, n = 267). Rodents with the potential for secondary seed
dispersal accounted for only 10.6% of the foraging events. The
diminutive M. minutoides accounted for 10.1% (n = 108) of the
activity and we only recorded five foraging events by S. pratensis
(0.3%, n = 3), and S. campestris (0.2%, n = 2). Of the 64 seed
stations used in the experiment, one had no sign of seed removal
or rodent activity and two were incorrectly set up; hence, all three
were removed from further analysis (n = 61).

Comparing the proportion of seeds removed by species, we
found that rodents removed a greater proportion of D. cinerea
than S. nigrescens (β = −1.30, 95% CI −2.52 to −0.26,
reference = D. cinerea). Model predicted estimates suggested
that rodents removed 32.6% more D. cinerea seeds (x̄ = 0.87,
SE = 0.06) than S. nigrescens seeds (x̄ = 0.66, SE = 0.10).

Examining the influence of the surrounding environment on
the number of seeds removed, for both seed species, we found
a model with only the fixed effect of grass biomass was the best
model with no competing models (Table 1). Grass biomass had
a significant negative relationship with the number of D. cinerea

seeds remaining in trays (β = −0.76, 95% CI −1.26 to −0.26),
where the number of D. cinerea seeds remaining decreased from
31 to 1 as grass biomass increased from a minimal 1,000 with a
maximum of 4,500 kg/ha (Figure 2). The relationship between
grass biomass and the number of S. nigrescens remaining was
not significant (β = −0.478, 95% CI −1.07 to 0.12), suggesting
a weaker relationship. We found little evidence that seed removal
was affected by the broader landscape context (i.e., composition
and configuration; Table 1).

Of the 61 seed stations used to understand seed removal, six
had camera failures. Using the seed stations with operational
cameras (n = 55), we found a strong positive relationship between
the proportion of seeds removed and rodent activity (β = 3.19,
95% CI 1.75–4.65, pseudo R2 = 0.76). However, we found no
indication that activity varied with the seed species used during
the trial (β = 1.15, 95% CI −0.24 to 0.19, reference = D. cinerea).
Similar to our investigation of seed removal, we found the best
model, with no competing models, to explain variation in rodent
activity was a model that included only the fixed effect of grass
biomass (Table 1). Rodents spent more time foraging in areas
with more grass biomass (β = 0.46, 95% CI 0.13–0.80). The total
number of minutes increased from approximately 96 to 450 over
the range of grass biomass recorded at our sites (Figure 3).

DISCUSSION

We found a strong linkage between the removal of seeds
and rodent activity, suggesting a potentially important role for
rodents in shaping the composition and structure of woody
vegetation in savannas. With only a small percentage of rodent
activity from rodents with the known ability to cache seeds, we
assumed the majority of rodent-seed interactions ended with seed
predation. This was particularly true for rodents’ interactions
with the seeds of the woody encroaching shrub D. cinerea.
Despite spending similar amounts of time with both seed species,
rodents removed 33% more of the seeds from D. cinerea.

Rodents’ selection of D. cinerea may be based on seed
properties (e.g., morphology, nutrition, and palatability). The
larger S. nigrescens seeds may provide rodents with a greater
volume of food, but D. cinerea likely has a higher nutritional
value (Janzen, 1984; Tiffney, 2004). This difference has been
documented in the seed pods and may extend to the seeds
(Tsopito and Adogla-Bessa, 1998; Aganga and Motshewa, 2007).
Additionally, optimal foraging theory predicts that animals select
seeds that provide the most nutritional gain for the least amount
of energy expended (Charnov, 1976; Brown et al., 1999). The
larger S. nigrescens seeds may require more energy to handle
or increase the rodent’s vigilance behavior during foraging
(Quenette, 1990). Accordingly, rodents may have selected the
smaller seeds of D. cinerea to consume food with minimal effort
while remaining vigilant.

We also found that the number of seeds removed by rodents
and the amount of time rodents spent foraging increased with
increases in grass biomass (Figures 2, 3). This supports our
prediction that rodents are more strongly influenced by localized
vegetation than the surrounding landscape. Thick grass cover is
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FIGURE 2 | The predicted number of Dichrostachys cinerea seeds remaining in seed trays (95% confidence interval in gray) as a function of grass biomass (kg/ha) in
the surrounding environment (0.25 ha).

likely to provide rodents with ample food resources and reduce
their perception of fear (Banasiak and Shrader, 2016). These
findings are consistent with the “landscape of fear” framework
(Laundré et al., 2014), where animals alter their movements and
behaviors to minimize predation risk while maximizing benefits
(e.g., foraging on seeds) (Lima and Dill, 1990; Brown, 1999;
Bleicher, 2017).

In savannas, grasses and shrubs compete for resources (e.g.,
water and light) and areas with a thick grass layer have lower rates
of seedling survival, reducing the chances of shrub establishment
(Köchy and Wilson, 2000; Rinella et al., 2015; Pierce et al.,
2018). Additionally, rodent predation of seeds of encroaching
shrubs in areas with thick grass may create a feedback loop,
where high grass biomass limits shrub establishment and
facilitates rodent seed predation which helps to maintain the
dominance of grassy vegetation. This feedback loop may be more
pronounced for plants that are herbivore-dispersed such as D.
cinerea, which rodents appear to select. Nonetheless, the role
of rodents may be substantially reduced if the system switches

from an open grassy savanna to an encroached savanna with
minimal grassy cover.

Through the removal of seeds, rodents can decrease seedling
recruitment (Ostfeld et al., 1997; Nuñez et al., 2008; Yu et al.,
2014) and the density of adult plants (Maron and Kauffman,
2006; Larios et al., 2017), altering composition (Louda, 1982;
Pearson et al., 2012, 2013) and shaping vegetation (Brown and
Heske, 1990; Edwards and Crawley, 1999; Moorhead, 2017).
In our savanna system, rodents have the potential to reduce
the recruitment of woody encroaching plants; however, we
did not consider the role of other herbivores. The nutritious
seeds and seed pods of woody encroachers are often consumed
and deposited in the dung of non-rodent herbivores, where
they can germinate rapidly (Campos-Arceiz and Blake, 2011).
This mechanism of dispersal may protect seeds from rodent
predation and enhance secondary dispersal (Vander Wall et al.,
2005; Enders and Vander Wall, 2011). Additionally, it is
plausible that the root suckering version of D. cinerea and
other encroaching species may be more important than seed
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FIGURE 3 | The predicted number of minutes that rodents foraged at seed trays (95% confidence interval in gray) as a function of grass biomass (kg/ha) in the
surrounding environment (0.25 ha).

dispersal in the establishment of D. cinerea and other encroachers
(Wakeling and Bond, 2007).

Shrub encroachment is altering tropical savannas (Stevens
et al., 2016a,b) and our results suggest a potential role for rodents
in mitigating their spread. However, rodent-shrub interactions
will need to be evaluated on more ecologically relevant scales,
while accounting for variability in the placement and relative
abundance of seeds (Lichti et al., 2014; Yi and Wang, 2015)
before we can interpret the role of rodents in limiting the
encroachment of woody plants. Future work should explicitly
examine rodent and seed interactions (Forget and Wenny, 2005;
Wróbel and Zwolak, 2013), instead of assuming seed predation
or dispersal based on previous research, laboratory studies, and
natural history accounts. If rodents provide this critical service,
it highlights the consequences of the loss and decline of seed-
eating mammals (Hurst et al., 2014; Mills et al., 2018) and the
need to maintain savannas’ thick grassy-layer that facilities seed
predation, which is threatened by chronic overutilization by
domestic and wild ungulates.
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