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White rhinos and other herbivores decrease visitations and increase 
vigilance in response to human vocalizations
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Harnessing the fear animals have of humans has the potential to aid in the conservation of wildlife. Most verte-
brates perceive humans as “super predators.” While predator cues are an important nonlethal management tool, 
the use of human cues for management has rarely been implemented or experimentally tested. Extensive poach-
ing is threatening the persistence of white rhinos (Ceratotherium simum simum), and there is a need to deter them 
from areas with elevated poaching risks. To investigate the feasibility of harnessing the fear white rhinos have 
of humans to aid in their conservation, we conducted playback experiments at rhino middens. We broadcasted 
repeated human (treatment) and bird (control) vocalizations, and measured changes in visitations and antipreda-
tor responses. We found that overall rhino visitations did not change in response to controls but decreased by 46% 
in response to human vocalizations. This pattern appears to be driven by the response of females, who decreased 
their visitations by 70% in response to human vocalizations, while visitations by males remained unchanged. 
This difference is likely related to males defending small exclusive territories. Providing evidence that changes in 
female visitation rates were a function of the perceived fear of white rhinos, we found that both sexes exhibited 
more vigilance in response to human vocalizations (males 69.5%, females 96%) compared to controls. We also 
saw a 63% reduction of other herbivores at treatment sites. Our findings provide evidence that the fear of humans 
can be used to alter the movements and behavior of female white rhinos, critical for population recovery, as well 
as other large herbivores.

Key words: behavior modification, Ceratotherium simum, middens, perceived risk, playback experiment

The fear animals have of predation is a powerful force that can 
reshape their behavior, habitat use, and movement patterns 
(Laundre et al. 2010; Ordiz et al. 2011). Animals assess vari-
ation in their risk of predation using different cues (olfactory, 
vibrations, auditory, and visual; Nersesian et al. 2012; Hermann 
and Thaler 2014) and show a heightened response to cues from 
the most lethal potential predators (Frid and Dill 2002). In 
many landscapes, humans have replaced large carnivores as the 
most lethal predator (Smith et al. 2017; Suraci et al. 2019), with 
most larger vertebrates perceiving humans as “super predators” 
(Ciuti et al. 2012; Smith et al. 2017; Suraci et al. 2019).

The most energetically costly response of animals to fear 
is to flee or avoid the area where they perceive a heightened 
risk (Frid and Dill 2002). Alternatively, animals can use vigi-
lance behavior to mitigate their risk while still accessing food 

resources (Li et al. 2009; Ordiz et al. 2011; Creel et al. 2014). 
Combined, the repeated use of these behavioral responses to 
nonlethal threats from humans can lead to reductions in animal 
fitness (Lima and Dill 1990; Creel 2018). However, there is a 
potential to harness the fear of animals to aid in their conser-
vation and management (Atkins et al. 2017; Allen et al. 2019; 
Miller and Schmitz 2019). In fact, the use of predator cues to 
induce fear in animals and increase their perception of preda-
tion risk (i.e., landscape of fear) has become an important non-
lethal management tool to reduce human conflict with potential 
nuisance species such as rodents, waterfowl, and scavenging 
birds (Baxter and Allan 2006; Atkins et al. 2017; Mahlaba et al. 
2017). Encouraging an animals response to fear might also help 
reduce the number of animals selecting potentially dangerous 
areas with a higher risk of mortality (i.e., ecological traps; le 
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Roex et al. 2020), or human conflict (Gaynor et al. 2019). For 
example, the fear of elephants (Loxodonta africana) to bees has 
been used, with some success, to deter them from raiding crops 
(Vollrath and Douglas-Hamilton 2002; King et al. 2009). Yet, 
the most effective management tool should elicit the greatest 
fear response, and for many animals, that response is likely to 
come from human cues (Ciuti et al. 2012; Smith et al. 2017; 
Suraci et al. 2019). While researchers have recognized the 
potential for using human cues for the management of wildlife 
(Cromsigt et al. 2013; Kuijper et al. 2019), rarely has this con-
cept been implemented or experimentally tested.

Poaching (i.e., illegal hunting) of white rhino (Ceratotherium 
simum simum) in southern Africa has resulted in dramatic 
population declines, threatening their persistence (Ferreira 
et al. 2018; Nhleko et al. 2021). One strategy for mitigating 
the effects of poaching is transporting rhinos to safer areas 
(Ferreira et al. 2018). However, there are substantial costs and 
risks (e.g., bovine tuberculosis) associated with these relo-
cations (Miller et al. 2018). As such, a cheaper, less invasive 
method for moving rhinos out of poaching hotspots is desir-
able. When rhinos encounter humans, their reactive response 
is to stand their ground or flee (Owen-Smith 1987). While we 
know very little about how rhinos respond proactively to areas 
with frequent human activity, we expect that they will avoid 
them (Creel 2018).

Male and female rhinos differ in their movement and 
social groupings. Female and subadult white rhinos maintain 
large annual home ranges (ca. 6–45 km2; Owen-Smith 1972; 
Pienaar et al. 1993; Rachlow et al. 1999; Shrader and Owen-
Smith 2002), while males establish smaller, more permanent 
ranges between 0.8 and 2.6 km2 (Owen-Smith 1971, 1988). 
Females and subadults form groups of 2–7 individuals, while 
territorial adult males are solitary (Owen-Smith 1974). All 
individuals regularly defecate in communal dung heaps, called 
middens (Owen-Smith 1974; Marneweck et al. 2017, 2018a). 
Middens are often located around frequently used footpaths, 
waterholes, and territory boundaries (Marneweck et al. 2018a). 
Studies have suggested that white rhinos use middens to com-
municate among each other since dung odors can be used to 
transmit information (Rodgers et al. 2015; Eppley et al. 2016; 
Marneweck et al. 2017). Territorial males frequent the middens 
throughout their territory (Marneweck et al. 2018b) and use the 
ones along territory boundaries to communicate territorial own-
ership (Owen-Smith 1974), while females likely visit specific 
middens less frequently, using them to advertise their estrous 
state (Marneweck et al. 2017; Marneweck et al. 2018a).

Due to the frequency with which they are visited, middens 
provide an opportunity to expose individuals to potentially 
fear inducing cues (Marneweck et al. 2018a). Accordingly, the 
goal for this study was to experimentally investigate the fea-
sibility of altering rhino behavior by introducing human audi-
tory cues at middens. Specifically, we wanted to determine if 
human auditory cues (i) reduce visitations to specific middens 
and increase vigilance of white rhinos, (ii) elicited sex-spe-
cific behavioral responses in white rhinos, and (iii) reduced 
the visitation rates of other herbivore species. We predicted a 

reduction in visitation rates of white rhinos and other herbi-
vore species, and an increase in the vigilance behavior of white 
rhinos in response to auditory cues from human activity (Frid 
and Dill 2002; Ciuti et al. 2012; Gaynor et al. 2018; Dwinnell 
et al. 2019). We also predicted that the response (i.e., visita-
tion, vigilance) of white rhinos to human cues would be more 
pronounced in female rhinos because they are less invested in 
the establishment and maintenance of their territories than the 
more localized males (Owen-Smith 1971, 1988).

Materials and Methods
Study site.—Our study was conducted in Marakele National 

Park (290.51 km2, Marakele hereafter), located in the south-
western part of the Limpopo province in South Africa (Fig. 1). 
Marakele receives 556–630 mm annual rainfall in the summer 
months (October–March) with temperatures up to 32°C (van 
Staden and Bredenkamp 2005). Winters are cool (1°C–6°C 
average temperatures) and dry with frost occurring in low-ly-
ing areas (Novellie and Spies 2014). The park is situated in 
the Savanna Biome and its vegetation includes Sour Bushveld, 
Mixed Bushveld, Sourish Mixed Bushveld, and North-Eastern 
Mountain Sourveld (van Staden and Bredenkamp 2005). The 
dominant grass species in the park include Trachypogon spica-
tus, Themeda triandra, Eragrostis curvula, and Aristida trans-
vaalensis (van Staden and Bredenkamp 2005). Marakele has a 
medium-sized (100 < 500) population of white rhino (Ferreira 
et al. 2017). Other common mammals in the park include ele-
phant, black rhino (Diceros bicornis minor), kudu (Tragelaphus 
strepsiceros), impala (Aepyceros melampus), zebra (Equus 
quagga), buffalo (Syncerus caffer), warthog (Phacochoerus 
africanus), and duiker (Cephalophinae; Novellie and Spies 
2014).

Study design.—We used a Before-After-Control-Impact 
(BACI) experimental design to understand the behavioral 
responses of white rhinos to human vocalizations at middens 
(Underwood 1991). We evaluated the response of white rhinos 
with metrics of visitations before and after human treatments 
occurred and compared them to measurements taken before 
and after control (i.e., bird vocalizations) treatments (Valeix 

Fig. 1.—Location of South Africa on the African continent and 
Marakele National Park within South Africa. The polygons represent 
the sections where the rhino playback experiments were carried out 
from June to September 2019.
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2012). Additionally, we recorded the changes in visitations of 
other herbivores using the same BACI design.

We identified experimental sites by opportunistically search-
ing for white rhino middens in areas of high rhino activity. At 
each midden we attached a camera (X-Change Color Model 
1279, Cuddeback with a white “strobe flash” for color pictures 
at night) to the nearest (5–15 m) tree with an unobstructed view 
of the midden. We assumed no variation in vigilance behaviors 
prior to our treatments and set cameras to take pictures to cap-
ture baseline visitation rates. Using preliminary data, we deter-
mined that rhinos did not stay at or return to the same midden 
after 15 min. Accordingly, we set the camera to have a 15-min 
delay between photo sequences and considered each sequence 
(three pictures) to be an independent visitation (Brook et al. 
2012). After 14 days of before-data, we selected sites with 
≥10 rhino visitations that were ≥600 m apart as experimental 
treatments.

We identified 17 viable middens for manipulation. Expecting 
more variation in the response of white rhinos to human 
vocalization, we randomly selected 11 sites for the treatment 
(humans) and six sites for the control (birds). We used auditory 
cues because sound can be easily manipulated, standardized 
across time and space, and elicits clear antipredator responses 
in mammals (Blumstein et al. 2008; Clinchy et al. 2011; Suraci 
et al. 2016a; Smith et al. 2017). To create environments with 
continuous and elevated levels of cues, we prepared 30-s play-
backs of human vocalizations obtained online from a library 
of local radio station archives. The human voices included 
both males and females speaking in six languages common in 
the area: isiZulu, isiPedi, English, Afrikaans, TshiVenda, and 
IsiShangaan. For controls we used 30-s calls from common 
bird species that should not elicit a fear response (Epperly et al. 
2021). During the day, we used calls from the African hoopoe 
(Upupa africana) and at night, we used calls from the African 
scops owl (Otus senegalensis).

We sourced our recordings of birds from collaborators and 
the Xeno-Canto website (www.xeno-canto.org). We cleaned 
(e.g., other voices, background music) all our recordings 
(human and control audio) using Audacity (version 2.3.3). We 
created 10 exemplars for each playback type (e.g., 10 hoopoe, 
10 isiPedi, etc.) for a total for 80 sound clips. Next, we created a 
24-h soundtrack made up of 30-s sound clip (control or human) 
followed by 90 s of silence to minimize the likelihood of habit-
uation to the audio recordings (Suraci et al. 2016a). We random-
ized the order in which the sound clips were played using base 
R (version 3.6.1, RStudio Team) functions. We broadcasted 
the human and control vocalizations through solar-powered 
speakers (Elzle, model BO-JDC01, China) for 14 days. Each 
midden had one speaker broadcasting the calls. The speaker 
was attached to a bush/tree within 2 m of the midden. Similar 
to other studies, we broadcasted the playbacks at a volume of 
80 dB (Suraci et al. 2019) and replaced used speakers with 
fully charged ones every 2 days. We kept the cameras in the 
same location throughout the experiment and switched them to 
video mode (30-s long videos during the day and 20-s during 
the night, the maximum video length the cameras can record 

at night) once the treatments began. At each site, we measured 
the number of independent white rhino visits by groups (group 
size = 1–4) and the sex of adults. We sexed adults during both 
day and night based on the presence of accompanying young 
(female) and genitalia. In a similar manner, for all other larger 
herbivores (>12  kg) we recorded the species, the number of 
independent groups (group size = 1–60), and individuals that 
visited the middens. Our research practices followed ASM 
guidelines (Sikes et al. 2016) for the use of wild mammals 
in research and we received all necessary permits and ethical 
clearances from South African National Parks (SANParks).

Behavior analysis.—To detect measurable differences in 
white rhino behavior once treatments began, we recorded and 
scored the behavior of rhinos that were recorded for > 15  s. 
To understand differences in vigilance behavior, we recorded 
six behavioral responses as head up (head held higher than 
the knees), head down (head held below the knee), foraging, 
defecating/urinating, interacting with another individual, and 
alert (i.e., head up and scanning around with ears twitching). 
Alert white rhinos always had their heads up, but white rhinos 
often held their heads up without displaying alert behaviors. 
We considered both a raised head and alert behaviors (i.e., 
scanning) as clear indicators of vigilance (Hunter and Skinner 
1998; Childress and Lung 2003; Li et al. 2009; Shrader et al. 
2013; Dalerum and Belton 2015). Similar to other studies, 
we restricted our analyses to the four most common and rel-
evant behaviors (i.e., head up, head down, alert, and foraging; 
Dalerum and Belton 2015; Suraci et al. 2016b; Palmer and 
Gross 2018).

We scored videos using the Solomon Coder software (19.08.02, 
Peter Andras). One observer reviewed videos from all trials with-
out knowledge of the treatment applied, and a second observer 
independently scored a sample (25%) of the videos to confirm 
the scores by the first observer (Cinková and Shrader 2020). We 
scored the behavior of the focal rhino (i.e., entered the frame first) 
for the entire video. When we observed a mother and calf pair, we 
only scored the behavior of the adult. We recorded all behaviors 
as events each being a minimum of 0.2 s in length. We converted 
the total durations for all behaviors to percentages to account for 
difference in the total time the animal was recorded (Epperly et al. 
2021), allowing us to compare full-length videos with videos in 
which white rhinos disappeared before the end of the video clip 
(minimum time ≥ 15 s).

Statistical analysis.—We compared the response of white 
rhinos to treatments combined by sex, and separately for males 
and females. This allowed us to determine if overall patterns 
were driven by differences in the response of each sex. To 
compare differences in rhino visitations to middens before and 
after treatments, we used multiple-paired estimation (compara-
ble to a repeated measures ANOVA; Ho et al. 2019), coupled 
with a nonparametric measure of effect size (Cliff’s delta). In 
addition, we generated Cumming plots which allowed for the 
visualization and estimation of the precision of the effect size 
via bootstrapping of the 95% CI (Cumming 2012). Estimating 
effect size allowed us to assess the strength of the change 
between the control and the treatment experiments (Tomczak 
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and Tomczak 2014). Cliff’s delta ranges from −1 to 1, where a 
delta value of −1 or 1 indicates no overlap in the data between 
experiments, and a value of 0 indicates complete overlap (Cliff 
1993; Macbeth et al. 2011). We fit rhino visitation models 
(combined and by sex) using the dabest package on Spyder 
(Python Software Foundation, Python 3.7.6 2022), and gener-
ated Cliff’s delta using the package orddom (Rogmann 2013) 
on the R platform (v. 3.4.3; R Core Team 2019).

Similarly, to compare differences between independent 
visitations for other herbivore species, we again used multi-
ple-paired estimation Cliff’s delta and Cumming’s plots. To 
compare overall differences between the four common behav-
ioral responses for white rhinos, we used a Friedman’s repeated 
measure test from the jmv package (Selker et al. 2022) in R, to 
account for the nonparametric distribution of the data. Finally, 
using the anovaRMNP function from the jmv package we con-
duced pairwise comparisons (Durbin–Conover test) specifi-
cally between the broad head up and head down categories, and 
the more specific alert and foraging categories.

Results
We recorded 197 (males = 123, females = 74) adult rhino from 
140 independent visits. Examining all white rhinos, we found 
a difference in independent visits between pre- and posttreat-
ment in response to the human treatment (Cliff’s delta = −0.41, 
SD [delta’s standard deviation] = 0.16, P = 0.01) relative to 
the control (Cliff’s delta = −0.06, SD = 0.24, P = 0.80), with 
overall rhino visits decreasing by more than 5 visits per midden 
(46%) during the human treatments (Fig. 2A). Separating the 
visitation data by sex, we found that the human treatment had a 
strong influence on visitation (Cliff’s delta = −0.60, SD = 0.19, 
P = 0.004) on female white rhinos compared to controls (Cliff’s 
delta = 0, SD = 0.34. P = 1), with female visits decreasing by 
at least 6 visits per site during human treatments (70%; Fig. 
2B). We also found that the visitations of males deceased in 
response to human treatments; however, this pattern was not 
significantly different (Cliff’s delta = −0.429, SD = 0.23, P = 
0.07; Fig. 2C) than controls (Cliff’s delta = −0.22, SD = 0.32, 
P = 0.51).

For all white rhinos, the main behavioral responses differed 
between the control and treatment experiments (Friedman’s 
test, χ2 = 89.32, d.f. = 3, P < 0.001). We found a difference 
in our broad categories of head down and head up, with more 
white rhinos having their heads up during the human treatments 
than in the control treatments (test statistic = 2.71, P < 0.05). 
However, we did not find a difference between our more spe-
cific categories, foraging and alert (t-statistic = 1.30, P = 0.20). 
Similar to our examination of all white rhinos, overall behav-
iors (Friedman’s test, χ2 = 105.0, d.f. = 3, P < 0.001) and broad 
head up and down categorization differed between treatments 
for males (test statistic = 5.14, P < 0.01). Specifically, male 
white rhinos had their head up 69.5% more often in response to 
human treatments than to control treatments. Again, we found 
no difference between the more specific foraging and alert cat-
egories (t-statistic = 0, P = 1.0).

The behavioral responses of female white rhinos were 
slightly different to the population as a whole. Their responses 
also differed between the treatments (Friedman’s test, χ2 = 
16.25, d.f. = 3, P < 0.01) but unlike males we found a difference 
between foraging and alert (t-statistic = 2.34, P = 0.02) as well 
as head down and head up (t-statistic = 2.52, P = 0.01). Female 
white rhinos spent a greater percentage of their time with their 
head up (96%) and alert (83.9%, i.e., scanning) during the treat-
ment experiments than during the control experiments.

Finally, we recorded 161 independent visits (of groups) from 
other herbivore species including black rhino (36), kudu (75), 
and zebra (81; Supplementary Data SD1). As with all pooled 
and female white rhinos, we saw fewer visits after the human 
treatment experiments compared to before them (mean differ-
ence = −17; Cliff’s delta = −0.44, SD = 0.09, P = 0.001; Fig. 
2D). We found no difference in the visitation of other herbi-
vores before and after the control treatments (Cliff’s delta = 
−0.01, SD = 0.14, P = 0.92).

Discussion
With humans now the dominant ecological force in most terres-
trial landscapes, regular encounters with humans are likely to 
instill fear in a wide range of animals (Ciuti et al. 2012; Gaynor 
et al. 2018). We found clear evidence that the perceived fear 
of white rhinos to humans resulted in avoidance and increased 
vigilance at middens. Rhino responses to human auditory cues 
were consistent with our predictions and the growing body of 
literature showing that the fear of animals to humans is ubiqui-
tous (Ciuti et al. 2012; Smith et al. 2017; Dwinnell et al. 2019). 
Moreover, our experimental findings showing that human audi-
tory cues can alter the behavior of white rhinos and other her-
bivores suggest that while cues of human activity may lead to 
deleterious effects on populations of wild animals, they also 
hold tremendous potential to be harnessed in the management 
of threatened species.

Using auditory cues of humans, we were able to reduce 
white rhinos use of an important social resource, middens. 
However, a larger portion of the changes in visitations that we 
observed were from female white rhinos, with males return-
ing to middens at rates that were reduced, but not significantly 
different than controls. The difference in visitations between 
males and females was likely related to males defending 
small (about 2.6 km2) exclusive territories. Male white rhinos 
rarely leave their territories, except to find water, in the dry 
season (Owen-Smith 1971, 1972). They define their territo-
ries by marking middens with scent (Owen-Smith 1971), and 
fresher scents are more likely to reduce confrontations with 
other males (Marneweck et al. 2018b). As such, the drive to 
regularly scent mark and maintain their territory was likely 
stronger than the fear of humans by male white rhinos. On 
the other hand, female white rhinos are more tolerant to the 
presence of other rhinos in their home ranges (Owen-Smith 
1971), and since they have larger home ranges, they have the 
option to move to a different part of their home range to avoid 
a risky area.
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Supporting our claim that changes in visitation rates were a 
function of perceived fear by rhinos, we found that white rhinos 
of both sexes that visited middens with human treatments dis-
played more vigilance (i.e., head up) than white rhinos visiting 
control treatments. When grazing herbivores hold their heads 
up and away from the ground, it is an indicator of vigilance 
(Hunter and Skinner 1998; Childress and Lung 2003; Li et 
al. 2009; Dalerum and Belton 2015). Studies have shown that 
some vigilance behavior comes at the cost of lost opportuni-
ties to mate and forage (Hunter and Skinner 1998; Childress 
and Lung 2003; Li et al. 2009; Dalerum and Belton 2015). 
However, large herbivores may be able to maintain a constant 
rate of food intake while exhibiting vigilance behaviors such 
as scanning the landscape for predators (Fortin et al. 2004). 
Although the visitation rates of male rhinos did not change with 
human cues, they did alter their vigilance behavior, suggesting 

that the increased human presence instilled fear, just not enough 
to overcome their drive to defend their territories. Finally, the 
results suggest that the other herbivores observed in our study 
also avoid areas with increased cues of human activities (Creel 
et al. 2014; Gaynor et al. 2018).

Randomly assigning treatments, we found no evidence that 
the responses of rhinos to playbacks were confounded by envi-
ronmental variation (e.g., water or vegetation); however, we did 
record more pretreatment visitation of rhinos on our treatment 
sites (n = 11, pretreatment x̄ = 19.0) than on our control site (pre-
treatment x̄ = 10.5). To adjust for this anomaly, we removed four 
sites with the highest number of pretreatment visitations from our 
analysis. Using this new data set (n = 7, pretreatment x̄ = 12.1) 
we still found that all rhinos (Cliff’s delta = −0.58, SD = 0.16, P 
< 0.001), and female rhinos (Cliff’s delta = −0.76, SD = 0.24, P = 
0.01) reduced visitation in response to human vocalizations.

Fig. 2.—Panels contain Cumming plots, with lines representing the rhino visits to middens before and after bird vocalizations controls (pre-con-
trol, post-control), human vocalizations teratments (pretreat, posttreat), and bootstrapped distributions of the mean differences in midden visits. 
Distributions that contain 0 suggest no change. The panels display visitations for (A) all rhinos (combined), (B) rhino females, (C) rhino males, 
and (D) other herbivores.
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Implementing fear as a management tool.—Our findings 
highlight the potential for using the fear of animals to humans 
as a cheaper, less invasive method than capturing and moving 
animals away from areas with potential for conflict. Poaching 
events are not homogenously distributed across the landscape. 
Rather, they are clustered, creating poaching hotspots (Haines 
et al. 2012; Maingi et al. 2012; Rashidi et al. 2015). Ease of 
access and areas with high concentration of target species (i.e., 
watering holes) can create these poaching hotspots (Haines et 
al. 2012; Maingi et al. 2012). If these hotspots can be identi-
fied, our results suggest that the localized application of human 
vocalizations may reduce the use of female rhinos of these eco-
logical traps, potentially mitigate their risk to poaching. This 
is especially important because the survival of adult females is 
critical to the recovery of white rhino populations (Nhleko et al. 
2021). Additionally, females may be more prized by poachers 
because of their potentially longer horns than males (Pienaar 
et al. 1991).

The localized application of fear using human vocalizations 
also has the potential for reducing the activity of herbivores 
in areas where they have caused ecological damage and are 
in conflict with humans. For example, fenced populations of 
African elephant (Asner et al. 2016; McCleery et al. 2018), 
white-tailed deer (Odocoileus virginianus; Côté et al. 2004), 
kangaroo (Macropus giganteus; Viggers and Hearn 2005), and 
aggregations of other herbivores can degrade vegetation com-
munities, threatening ecosystem function and reducing produc-
tivity (Asner and Levick 2012; Cromsigt et al. 2013; Asner et 
al. 2016). These herbivore-induced impacts are often localized 
and using their fear of humans would allow managers to change 
their movement and behavioral patterns to reduce their use of 
sensitive or degraded areas (Cromsigt et al. 2013).

Our study demonstrated the potential to alter female rhino 
movements and behavior in localized areas over a 2-week 
period. The methods used here might have utility in moving 
females from localized hazards (i.e., fences, roads, ecolog-
ical traps) where they could be in danger of being poached. 
However, this technique will be more valuable if it could move 
white rhinos across larger areas (>500 m) and keep them away 
for longer periods. To do this, we would need to create an unpre-
dictable landscape of fear by making the perception of danger 
spatially predictable yet temporally unpredictable (Cromsigt et 
al. 2013). Prior to increasing the spatial and temporal scales of 
the human vocalization trials it would be critical to fill import-
ant informational gaps. For example, we would need to know 
how far white rhinos move to avoid human treatment sites, 
how long they avoided the sites after vocalizations end, and 
importantly, how much exposure leads to habituation. Rates of 
habituation are influenced by the temporal distribution of the 
stimulus, with infrequent presentation of the stimulus result-
ing in no habituation (Staddon 1993). As such, we would have 
to examine different ratios of human vocalization to silence to 
determine habituation thresholds. It would also be important 
to determine the influence of volume and speaker density (i.e., 
distribution across the landscape) on the magnitude and spatial 
extent of the response of white rhinos. Addressing these gaps 

would allow us to determine the length and spacing of treat-
ments and maximize the potential of using the fear of rhinos to 
humans as a management tool.

The large-scale implementation of fear as a management 
tool would also have to address several logistical issues. For 
example, it would require speakers that can play for longer than 
2 days without a need to change batteries. This could likely 
be achieved by pairing speakers with a solar panel or porta-
ble battery. Additionally, we suggest that it would be worth 
considering using food and human vocalizations as a poten-
tial management strategy. Ensuring that high-quality resources 
(e.g., supplemental forage, or the use of fire to enhance grass 
quality) exist in low poaching areas may reduce the probability 
of animals returning to poaching hotspots with human vocal-
ization treatments. However, additional measures (e.g., trans-
locations) may still be needed to remove females from high 
poaching areas. Doing so would reduce the possibility of adult 
females leading subadult companions to these dangerous areas 
during probing excursions outside of established home ranges 
(Shrader and Owen-Smith 2002).

In conclusion, we found the fear of humans to be an effective 
deterrent for female white rhinos and their young. Since the 
loss of a female has negative impacts on the lifetime repro-
ductive potential of the population (Nhleko et al. 2021), any 
technique that can deter females from high poaching areas is 
likely to aid conservation efforts. With refinements, this tech-
nique could be scaled temporally and spatially to become an 
effective tool for changing the behavior of animals in high-risk 
areas and anti-poaching efforts.
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