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Highlights
The use of ‘big data’ is increasingly
championed as a scientific framework
to help solve our global conservation cri-
sis. Yet experiments are also advocated
as essential for identifying mechanisms
and interventions needed to solve this
crisis.

Big data can provide the scaffolding for
documenting patterns across scales,
whereas experiments can inform novel
Many ecologists increasingly advocate for research frameworks centered on the
use of ‘big data’ to address anthropogenic impacts on ecosystems. Yet, experi-
ments are often considered essential for identifying mechanisms and informing
conservation interventions. We highlight the complementarity of these research
frameworks and expose largely untapped opportunities for combining them to
speed advancements in ecology and conservation. With nascent but increasing
application of model integration, we argue that there is an urgent need to unite
experimental and big data frameworks throughout the scientific process. Such
an integrated framework offers potential for capitalizing on the benefits of both
frameworks to gain rapid and reliable answers to ecological challenges.
situations and provide the means for
conservation actions.

The complementarity of these frame-
works provides untapped opportunities
for leveraging the strengths of both
frameworks through an integrative
process.

We outline an integrated framework that
can address a range of conservation
problems, including forecasting, ecologi-
cal novelty, scaling, and generalization of
conservation actions.
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A scientific revolution in need of balance
New information and perspectives are revolutionizing the way scientists address ecological and
conservation problems. With the growing availability of earth monitoring tools, digital sensors
and community science, coupled with flexible statistical approaches, big data (see Glossary)
are increasingly championed to help solve global conservation problems and answer long-stand-
ing questions in ecology [1,2]. Harnessing a growing number of large and diverse data streams of
ecological observations, or big data, ecologists have been able to explore and reveal ecological
patterns (e.g., climate change effects, species declines) on unprecedented temporal and spatial
scales [1]. While thisBig Data Framework (Box 1) shares some similarities with attributes of ob-
servational studies, the scope of large data streams and their interpretation carry new chal-
lenges [3]. In particular, there are an increasing number of examples where the conclusions
from big data can be misleading [3]. This has led to concerns that conclusions from the Big
Data Framework are: (i) not accurate at actionable scales [4]; (ii) not able to elucidate causal
mechanisms [4,5]; and (iii) limited in their ability to predict future ecological states [6].

Meanwhile, some ecologists continue to advocate for theExperimental Framework (Box 1) to pro-
duce an understanding of ecological processes and their relevance to conservation [7,8]. The use of
well-planned experiments has produced ecology’s core understandings of population limitations,
species interactions, the role of biodiversity in ecosystem functioning and has identified specific
causes and solutions for environmental degradation [9–11]. Yet, experiments are often limited to spe-
cific taxonomic groups and by their spatial and temporal scope. A recent surge in the coordination of
field experiments provides one means to address these issues [12,13], but no matter how broadly
deployed, concerns remain that the implementation of experiments can be slow, inefficient, costly,
and unable to capture the breadth and complexity of our conservation crisis [13–15].

Some scientists still advocate for their preferred frameworks [13–16]. For example, while arguing
for the use of predictive models with observational data, Currie [13] notes that, ‘Mechanisms that
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Box 1. Scientific frameworks in ecology and conservation

Ecology and conservation apply a variety of epistemologies to address problems. Big data has grown from the availability of large
data streams and analytical tools.We define theBig Data Framework as the generation, design, analysis, and interpretation of big
data as an epistemology for science [48] (Figure IA). Studies that use big data share similarities with observational studies, but
differ in design and execution, where big data studies typically do not have design-based inference because they often use
nonprobability samples [3]. By contrast, experiments are motivated by a desire to establish causality and identify the processes
driving patterns. The Experimental Framework typically uses a hypothetico-deductive approach, using manipulations to identify
mechanism or address perturbations used for conservation action (Figure IA).

The benefits of each framework are clear (Figure IB). The Big Data Framework can harness large amounts of data at low
cost to the end-user, potentially increasing the precision of estimated patterns. Furthermore, it has tracked changes in bio-
diversity across unprecedented scales, showing losses in the diversity of animals [49–51] and identifying areas of degra-
dation for restoration [52,53]. It has also illuminated climate-induced changes in phenology [54], species distributions [55],
and disturbance regimes [56]. By contrast, the Experimental Framework has been used to evaluate interventions such as
fire management [57], payment of ecosystem services [58], and removal of invasive species [59]. It has also determined the
mechanisms (e.g., light pollution [11] and introduced predators [60]) generating species declines.

In isolation, each framework has limitations due to different types of uncertainty. Inferential uncertainty revolves around the
problem of reliable knowledge when faced with bias, correlation, and external validity. The Big Data Framework often uses
unstructured and unplanned data, potentially leading to bias and loose linkages to questions [61]. Correlations and induc-
tion are useful for making associations and generating hypotheses but can be limited in examining complex causal ques-
tions. The external validity of results from the Experimental Framework may be limited because outcomes may not be
relevant to larger populations or spatial extents. Individually, the Experimental and Big Data Frameworks are both affected
by extrapolation uncertainty that comes from applying conclusions across space and time. The Experimental Framework
is typically implemented at fine grains and small extents, limiting its application to large-scale problems. By contrast, the
Big Data Framework is frequently implemented at coarse grains and large extents, yet downscaling these approaches
to finer scales, where conservation actions occur, is often challenging.
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Figure I. Contrasting the attributes of the Experimental and Big Data Frameworks and their complementarity. (A)
Experimental and Big Data Frameworks often differ in philosophy, design and execution (or implementation), analysis, and
interpretation. For instance, experimental frameworks use manipulations that generate probability samples, whereas big data
frameworks typically use high volume, nonprobability samples from observations. (B) Based on these differences, the benefits
of each framework differ, such that there are trade-offs when using each framework in isolation. Yet, the shortcomings of each
can be mitigated by leveraging and integrating these frameworks throughout the scientific process.
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Glossary
Big data: data with typical characteris-
tics such as high volume, collected at
high frequency and contains a complex
mix of data types. Often includes
nonprobability samples.
Big Data Framework: the generation,
design, analysis, and interpretation of big
data as an epistemology for science.
Causal modeling: models that are
constructed for gaining causal inference,
by focusing on potential cause-and-
effect relationships from observation
(e.g., using directed acyclic graphs).
Counterfactual modeling: models
that are constructed to predict how a
causal factor is a necessary factor without
which the outcome (e.g., treatment
success) would not have occurred.
Data integration: making data from
different sources usable and useful as a
cohesive product by increasing
interoperability.
Design integration: linking different
scientificmethods, such as experimental
treatments with nonprobabilistic
sampling, in study designs.
Experiment: a deliberate manipulation
of one or more variables done in such a
way that other variables are held constant
or rendered unimportant through suitable
study design. The three cornerstones of
experiments are randomization,
replication, and manipulation.
Experimental Framework: the use of
manipulations to identify mechanism or
address perturbations used for
conservation action typically employing
a hypothetico-deductive approach.
Hybrid dataset: a dataset that
combines observational with
experimental data.
Model integration: using models that
combine different sources of data under
a common framework or the creation of
‘meta-models’ that combine
component models.
Nonprobability samples: data that
are sampled whose sampling
mechanisms are unknown. Common in
opportunistic data used in the Big Data
Framework.
Observational study: a study that
lacks at least one of the three
cornerstones of experimentation,
particularly manipulation, but study
design is structured such that it includes
probability samples for a treatment or
factor(s) of interest.
Observation: any sort of measurement
of ecological phenomena.
are statistically detectable in experimental systems may contribute very little to the variation of na-
ture’. Alternatively, Wiersma [8] counters that, ‘Experiments are at the heart of what it means to
“do science”’. Still others have a keen interest in integrating Big Data and Experimental Frame-
works to overcome their shortcomings [1,17] and better address environmental challenges.
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Probability samples: data that are
sampled whose sampling mechanisms
are known or designed, such as from
structured data. Common in
observational and experimental studies.
There are well-known limitations of both the Experimental and Big Data Frameworks (Box 1), yet
many of these could be overcome by leveraging each of their strengths. The development of
modeling approaches that can integrate big, experimental, and other types of observational
data has been a critical first step [1,17–19]. However, model integration alone is not sufficient
to address many challenges. We argue that combining Experimental and Big Data Frameworks
throughout the scientific process (i.e., from conceptualization to interpretation and dissemination)
will best address our conservation crisis on the scales where ecological processes can be altered
and managed. Here, we provide a vision for uniting big data and experimentation to more rapidly
and reliably advance ecology and conservation.

Complementarity in frameworks generate opportunities
Conservation strategies require synthesizing a complexity of information for effective outcomes.
The Big Data Framework can often provide a foundation for documenting and monitoring pat-
terns of biodiversity across spatial scales (from local to global [1]). The Experimental Framework
can deliver direct assessments of perturbations that are relevant for conservation interventions
(e.g., disturbance, restoration) and can inform the understanding of novel situations. For example,
recent syntheses using a Big Data Framework highlight that climate change has not been the pri-
mary driver of extinction risk [20]. Yet, the counter argument is that patterns uncovered from the
recent past may not inform expectations for a novel climate future [21], an issue that can be ad-
dressed with the Experimental Framework. Both arguments are correct, and yet neither can be
fully addressed in the absence of each other. Combining these frameworks could provide value
by balancing the limitations of one with the strengths of the other.

An Integrated Framework for the future of ecology and conservation
To fully realize the benefits of Experimental and Big Data Frameworks, integration is needed
throughout the scientific process. Although the process and workflows of these frameworks
are not identical, they share components that provide a means for integration. Both frameworks
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. A workflow of an Integrated Framework unifying Big Data and Experimental Frameworks. The benefits
(white boxes) of Big Data (blue) and Experimental (orange) Frameworks can be leveraged to inform each stage (black circle) o
the scientific process in an Integrated Framework. White lines extend from white boxes in different patterns unique to each
benefit. Lines represent the most likely stage of the scientific process where these benefits can be harnessed. Utilizing the
benefits of each framework throughout the scientific process will lead to a host of improved outcomes (in yellow) fo
ecology and conservation. See worked examples in Boxes 2 and 3.
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include hypothesis or question generation, design and implementation, analysis, and interpreta-
tion [22,23]. Integration can occur for each component of these frameworks (Figure 1), but in
practice it will be necessary to weigh the benefits of each framework over the other at different
stages of the scientific process. We discuss integration for each component; see Boxes 2 and
3 for worked examples.

Question and hypothesis generation
Hypothesis and question generation frequently proceed by probing observed patterns [24]. While
experiments have often emphasized hypothetico-deductive philosophies and the Big Data
Framework has emphasized more inductive logic, there are opportunities to have these ap-
proaches feed off each other. The Big Data Framework can be used to speed the discovery of
patterns to refine and expand hypotheses for testing by experiments [25]. For instance, experi-
ments on predation risk have provided invaluable insights on the roles of consumptive versus
nonconsumptive effects [26], but how such interactions play out among individuals in space
and time remains challenging to understand. This leads to key questions regarding behavioral
contact processes that big data from per-second readings of high-resolution GPS tags can iso-
late in ways not possible from other types of information [15]. High-resolution data can also re-
duce biases that may arise when interpreting behavioral interactions with coarse-scale
observations, such as the underestimation of anti-predator responses by elk (Cervus canadensis)
to wolves (Canis lupus) [27]. Coupling high-resolution movement data with fear experiments [28]
may shed new insights into landscapes of fear and their consequences.

Design and implementation
The design and implementation of science can also be improved through design integration.
The Experimental Framework can harness gradients identified from the Big Data Framework
Box 2. Example of an Integrated Framework to inform phenological changes from environmental changes

Problem

Forecasting plant and animal phenology over short and long timescales remains challenging, despite its strong sensitivity
to environmental changes, such as warming [62]. It is poorly understood howmuch short-term climate variability drives the
timing of subsequent phenological events (Figure I). Although previous work on plant phenology based on satellite remote
sensing suggested marked impacts [63], initial big data analyses utilizing coarse spatial grain historical data for North
American lepidopterans (butterflies and moths) and temporally fine-grain (daily) historical climate data have shown strong
associations between unusually warm or cold days and lepidopteran flight duration (Figure I). This pattern holds even after
accounting for typical measures of accumulated heat. How general is this result across different regions of the planet and
organisms, and how could this inform forecasting under environmental change?

Design and implementation

An Integrated Framework can move beyond independently leveraging Big Data and Experimental Frameworks. In an In-
tegrated Framework, scaling across temperate regions of the Northern Hemisphere and taxa involves utilizing big data re-
sources, including high-density professional monitoring and community science data, to examine co-located plant and
insect phenological responses to climate variation at finer grain. In situwarming experiments across multiple sites [64] with
differing climate context are chosen based on logistics and knowledge of initial big data results (Figure I). Experiments, in-
cluding replicated field exclosures that limit species interactions and greenhouses or growth chamber-based experiments
that manipulate variation in daily conditions, along with overall warming, provide ameans to perturb the system under con-
trolled conditions.

Analysis/interpretation

An Integrated Framework that combines the strengths of Big Data and Experimental Frameworks allows for strong infer-
ence of phenology change that can generalize over a broad extent [65]. In particular, workflows that dynamically assimilate
experimental and big data results can be directly fed into process models for phenology responses that take into account
overall warming and climatic extremes and that can make short- and longer-term forecasts (Figure I). Further experiments
can be used to help reduce uncertainty in areas where models are particularly poor at prediction.
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Figure I. A worked example to understand and predict changes in phenology using big data and experimental
approaches that inform each stage of an Integrated Framework, from defining the problem (Problem) to study
design (Design and Implementation), and interpretation of findings (Interpretation). This approach has feedbacks
between interpretation and design that hasten new knowledge generation and applied outcomes.
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for the placement of manipulations [29,30], improving the relevance of manipulations for predic-
tions across scales and providing a better foundation for reducing spatial and temporal biases
when combined with big data. For instance, to understand the response of plant communities
to climate change, treatments in climate warming experiments should, but currently do not,
match future climate predictions from big data [6]. Similarly, conclusions from the application of
the Big Data Framework often include concerns that data are spatially biased and may not cap-
ture key environmental changes [31,32]. The Big Data Framework can then utilize experimental
outcomes to better identify more targeted data streams, in terms of locations for data needs or
data types relevant to causal processes (see worked examples in Boxes 2 and 3). Furthermore,
the replication of experiments can be increased at low cost to an individual researcher by using
big data from community science or Earth monitoring tools across larger areas [33]. Implementa-
tion of the Big Data Framework can also gain efficiency by narrowing the search for relevant
model formulations that capture processes revealed through experimental manipulations. Finally,
design integration and implementation can facilitate data integration from Big Data and Exper-
imental Frameworks, resulting in hybrid datasets that can be analyzed to produce more reliable
conclusions [1,17].

Analysis and modeling
Currently, the most extensive and successful efforts to leverage the strengths of these frame-
works have focused on the analysis portion of the scientific process [17]. The development and
974 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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Box 3. Example of an Integrated Framework addressing insect conservation

Problem

Recently we have seen dramatic declines in the diversity and abundance of insects [66]; however, the scope, scale, and causes
remain poorly understood. Big data approaches that feed vast opportunistic data streams into robust modeling frameworks
could inform understanding the changes in occurrence for some clades and regions, such as North American bees [67]. How-
ever, these big data approaches are typically sparser in the past, limiting trends to coarse spatial scales. In addition, the stressors
causing insect declines, which can be identified by experiments [11], are likely operating at finer scales.

Design and implementation

An Integrated Framework can be used to understand themagnitude and trends of potential stressors across clades and regions,
while localizing stressor mechanisms. For example, Soroye et al. [67] collated broad-scale opportunistic data on bumble bees
across North America and Europe, finding declines were driven by temperature variation. Despite these associations, the causal-
ity of temperature changes driving trends remains unknown, and other stressors, for example, insecticides, invasive species, and
habitat loss, may also be influential [9,66]. Experiments manipulating temperatures, where treatments reflect observed changes
from Soroye et al. [67], could estimate relevant effect sizes of temperature on population limitations, either as simple treatments
within areas of known changes, as coordinated experiments across regions, or as factorial experiments that contrast temperature
to other hypothesized stressors [11]. Experiments can then help identify gaps in insects’ responses to stressors, which can be
filled by big data streams utilizing technological advancements (e.g., computer vision, radar, acoustics, molecular techniques)
to improve spatial, temporal, and taxonomic coverage of trends [68].

Analysis/interpretation

Experimental results can be linked with big data models in two ways. First, experimental results can alter covariates or the
model structure in analysis, by identifying hidden interactions or important stressors. Second, experimental effect sizes
could be used as priors in models or through joint likelihoods, updated as more trend data becomes available. Such priors
could be parameterized to further hone inferences by drawing strength across species that are closely related or share
similar traits. A challenge will be relating fine-scale experimental results to coarse-grained big data. While methods are na-
scent, one approach is scale-invariant model parameterizations [69], such as point process model formulations that use
integrated intensity functions to scale from smaller to larger grains [70]. The outcome of this Integrated Framework can im-
prove knowledge of mechanisms and scales at which stressors operate and ultimately inform interventions that maximize
conservation outcomes.

Trends in Ecology & Evolution
use of models to link data generated from different data sources and inferential frameworks is
growing rapidly [18,34,35]. These model integration tools can address some shortcomings in
both frameworks. For example, using statistical models that incorporate experimental and syste-
matically sampled data arising from probabilistic samples with the unplanned data streams
from nonprobabilistic samples, common in big data, can increase precision and reduce biases
[17,18]. Model integration methods such as hierarchical models can also improve the relevance
of both Experimental and Big Data Frameworks [17,36]. For instance, Talluto et al. [37] illustrated
how experiments on plant population growth at a fine spatial scale can be used as priors in a hi-
erarchical Bayesian model to capture coarse-scale information on fundamental niches to predict
species distributions. Taken together, model integration and analysis are key components of a
broader Integrated Framework.

Interpretation and scope of inference
Finally, the interpretation of studies and the knowledge gained will be improved through unifica-
tion. Linking experiments with big data will help break down the uncertainty that currently con-
strain each framework in isolation (Box 1). Inferences from the Big Data Framework often result
in correlative associations when causality is desired. Advances in causal modeling and coun-
terfactual modeling with big data provide an exciting way forward [38,39]. Yet, without the
benchmark of causal experimental outcomes to resolve conflicting conclusions, the scope of
causality obtained from such models remains unclear. In addition, the reliability, context, and ap-
plicability of experiments to real-world problems can be improved via integration with the Big Data
Framework.
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 975
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Problems the Integrated Framework can solve
An Integrated Framework could be applied to a wide range of ecology and conservation prob-
lems. We provide two examples of how this framework can be operationalized (Boxes 2 and 3)
for different applications and outcome values for example, forecasting and delimiting spatial
scale at which stressors operate. In the following section, we highlight four problems where the
application of an Integrated Framework could be particularly fruitful.

Forecasting future state changes
Many forecasts utilize space-for-time substitutions, but these rely on assumptions of stationarity
and are often poor at extrapolation to future states [40]. Forecasting is a key area for the
integration of Experimental and Big Data Frameworks, but critically this integration should be
bi-directional such that big data-driven forecasting models predict outcomes from experimental
systems that perturb a system beyond its current state. Feedbacks between experimental results
and forecast projections can not only lower uncertainties in those forecasts but completely shift
parameters of underlying processmodels by correctly informing their mechanistic basis. To prop-
erly understand and predict the system, it is important that big datamodel results feed into design
(e.g., magnitude and placement of manipulations) and data collection (e.g., earth monitoring
tools, sensors, community science) of experiments used for forecasting. Box 2 provides a
worked example of phenology forecasting integrating big data and experimental designs.

Ecological novelty and no-analog futures
Many problems in ecology and conservation either emerge from, or will generate, ecological nov-
elty. Novelty can arise through climate conditions or the generation of new ecosystems, habitats,
or communities that are unlike the ecological or evolutionary reference conditions [41]. Novelty is a
challenging issue to address, as there is often limited information on how species respond to new
conditions. Faske et al. [42] used transplant experiments for an invasive forest pest, the spongy
moth (Lymantria dispar L.), to interpret factors that may limit range expansion. Experiments like
these can be used with model integration, which may provide more reliable predictions into
novel conditions than models parameterized using only existing range data. Similarly, Alexander
et al. [43] argue that experiments are critical for understanding no-analog climate futures that are
predicted by investigations using the Big Data Framework [44].

Scaling
The problem of translating patterns and processes across scales remains a fundamental chal-
lenge for ecology and conservation. An Integrated Framework provides a foundation for design,
data, and model integration, which can reduce bias and lead to greater precision in conclusions.
Change-of-support procedures that combine data with mismatched spatiotemporal extents are
a key area in statistics that aims to address this issue [45]. For example, hierarchical and point-pro-
cess models can be formulated in some situations to combine different sources of information
while properly accounting for uncertainty [19]. Thesemodels have typically been applied in the context
of linking different types of observational data (e.g., unstructured and structured observational data)
measured at different scales [18]; however, there is potential for linking experiments and big data in
this way to generate more reliable predictions across scales. Box 3 provides a worked example of
how experiments and Big Data can inform scale of processes for insect declines.

Conservation action
Many management-based conservation actions involve perturbations, such as altering
disturbance regimes, restoring habitats, or managing hydrology. Experiments can inform the re-
liability of perturbations, but by linking with big data, we can speed the implementation, expand
the scope of investigations, and generalize understanding [46]. Furthermore, the Big Data
976 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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Outstanding questions
Will the integration of experiments with
big data throughout the scientific
process lead to more reliable and
timely conservation evidence and
actions?

What is the future and importance of
experiments, big data, and their
integration, for interpreting causality?

Under what conditions does an
Integrated Framework lead to differing
conclusions, and how do scientists
reconcile such conflict?

What types of technical (software,
cyberinfrastructure) and physical
(experimental sites and networks)
infrastructure are needed to hasten
knowledge integration?

What are the ‘best practices’ for
implementing and evaluating each
step of the scientific process when
implementing an Integrated
Framework?
Framework can hone designs and implementation to refine perturbation insights, thereby leading
to more effective interventions [46]. Box 3 provides an example of how an Integrated Framework
can inform the location and types of interventions needed to mitigate the decline of insects.

Realizing an Integrated Framework
While we have shown nascent examples of integration at different phases of the scientific process,
realizing the full potential of an Integrated Framework requires at least four fundamental changes.
First, scientists and practitioners will need better transparency and objectivity in interpreting the
scope and potential of different frameworks. We believe that some of the most practical approaches
to breaking barriers and integratingBigData andExperimental Frameworks are to focus on common-
alities in vision and the need for clear, tangible benefits for ecology and conservation. Second, iden-
tifying opportunities to integrate these frameworks will benefit from training and better access to
resources.We recommend integrating ecological problem solving, team teaching by big data and ex-
perimental scientists, and exposure to Big Data and Experimental Frameworks throughout the under-
graduate and graduate curricula of ecology, conservation, and natural resource programs. Third,
investment from both scientists and stakeholders is required. More specifically, research positions
and funding models will need to prioritize and facilitate networks of researchers working on common
goals over individuals and small teams [47]. Fourth, to remove inefficiencies in the flow of information
(e.g., publications, data repositories) to and fromBig Data and Experimental Frameworks, information
transfer needs to be hardened into systems designs where experimentalists and modelers get rele-
vant results but still quickly cross-communicate in an inclusive and readily accessible way.

Concluding remarks
The advent of the Big Data Framework has expanded the scope and scale of ecological problems
that are solvable. Yet an Integrated Framework offers substantial opportunities for leveraging the
Big Data and Experimental Frameworks to gain rapid and reliable answers to the conservation cri-
sis. Although integration may not be needed for all ecological and conservation problems, we ex-
pect that many issues will benefit from using an Integrated Framework. There are several key
questions that need answers regarding the implementation of an Integrated Framework, includ-
ing when, where, and how to best apply these principles (see Outstanding questions). Yet, given
the tremendous success of recent developments in model-based integration, we expect that in-
tegration throughout the scientific process will be an equally worthwhile pursuit.
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