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Trophic interactions
between primary consumers
appear to weaken during
periods of synchrony

Katie R. Hooker1*, L. Mike Conner2, Steven B. Jack2,
Gail Morris2, William E. Palmer3, Brandon T. Rutledge2,
D. Clay Sisson3, Theron M. Terhune3, Shane D. Wellendorf3

and Robert A. McCleery1

1Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, United States,
2The Jones Center at Ichauway, Newton, GA, United States, 3Tall Timbers Research Station and Land
Conservancy, Tallahassee, FL, United States
Our understanding of synchrony between populations from different taxonomic

groups has been centered on predator–prey dynamics in simple systems but has

rarely been examined in complex predator–prey systems. In addition to trophic

interactions such as predator–prey dynamics, there is some evidence that

exogenous factor such as climatic variation may facilitate synchrony between

different taxonomic groups. Using three longitudinal datasets on quail (Colinus

virginianus) and cotton rats (Sigmodon hispidus) we examined 1) the consistency

of synchrony across time and space, 2) the relative influence of trophic

interactions vs. exogenous factors on synchrony and 3) if trophic interactions

were positively associated with synchrony between populations. We found

evidence of consistent synchrony in cotton rat and bobwhite populations at

both the site and regional levels. We found that trophic interactions between

cotton rats and bobwhite were associated with relative synchrony between these

populations, but these interactions appeared to weaken in years of greater

synchrony. We did not find evidence that exogenous factors influenced

relative synchrony at the regional level. Given the lack of a clear mechanistic

explanation of the patterns observed in our data, we propose an alternative

climate-mediated predation framework to explain synchrony in complex

predator–prey systems. This framework includes both classic bottom-up

theories of regulation while integrating trophic interactions via components of

the shared predator hypothesis.

KEYWORDS

climate, Colinus virginianus, Moran’s theorem, shared predator hypothesis,
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Introduction

Wildlife populations that co-vary in time and space have been

investigated by scientists since the birth of ecology (Chapman, 1928;

Elton, 1949; Andrewartha and Birch, 1954; Krebs, 1985; Brewer,

1988). Synchronous population dynamics, defined as coincident

changes in abundance (Liebhold et al., 2004), have been observed

across taxonomic groups, including invertebrates (Sutcliffe et al.,

1996), fish (Myers et al., 1997), birds (Michel et al., 2016), and

mammals (Ims and Steen, 1990). Despite its historical foundation,

the patterns, causes, and consequences of synchronous population

fluctuations are still not well understood (Liebhold et al., 2004).

Most examples of synchrony come from disjunct populations of the

same species (Burrows et al., 2002; Post and Forchhammer, 2002;

Bellamy et al., 2003; Krebs et al., 2013) or closely related species

(Raimondo et al., 2004a; Raimondo et al., 2004b; Robertson

et al., 2015).

Synchrony between populations from different taxonomic

groups is thought to be driven by exogenous factors such as

environmental stochasticity (Moran, 1953) and trophic

interactions such as competition and predation (Liebhold et al.,

2004). There is considerable evidence that exogenous factors can

cause synchrony in closely related species (Cavanaugh and

Marshall, 1972; Ranta et al., 1997; Kendall et al., 2000; Koenig

and Liebhold, 2016). Two sympatric populations may co-occur

without synchronizing until a catalyst, such as changes in weather

patterns, creates conditions for synchrony (Moran, 1953).

Additionally, factors such as changes in habitat quality and

weather patterns (i.e., the North Atlantic Oscillation) can alter the

amount of synchrony found among populations across space and

time (Hurrell, 1995; Ranta et al., 1997; Ranta et al., 1998; Koenig,

2001; Allstadt et al., 2015). While these patterns appear to be clear

for closely related species, they are unclear when synchrony occurs

in populations of different taxonomic groups.

Much of our understanding of synchrony between populations

from different taxonomic groups has centered on trophic

interactions, via predator–prey dynamics (Ims and Steen, 1990;

De Roos et al., 1991; Gurney et al., 1998; Spiller et al., 2016) that

occur in relatively simple communities of predators and prey (Lack,

1954; Angelstam et al., 1984). While the concepts generated from

simple systems have been broadly applied (Davenport and

Chalcraft, 2012; Nordberg and Schwarzkopf, 2019), rarely have

they been examined in complex predator–prey systems. Meanwhile,

other trophic mechanisms like competition for resources (Koenig,

2001; Jones et al., 2003) and similarity in species’ reproductive

strategies may also increase the opportunity for synchrony (Moran,

1953; Liebhold et al., 2004). Additionally, there is some evidence

(Liebhold et al., 2004) but little understanding of how trophic

interactions and exogenous factors may interact to influence

synchrony between populations from different taxonomic groups

(Bjørnstad et al., 1999).

Two species that may allow us to better understand the

influence of the synergies of exogenous factors and trophic

interactions in a complex food web are hispid cotton rats

(Sigmodon hispidus) and northern bobwhite (Colinus virginianus;

hereafter bobwhite; Staller et al., 2005; Morris et al., 2011). Cotton
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rats and bobwhite are dominant primary consumers in ecosystems

throughout the southeastern United States. Both species serve as an

important food source to several shared generalist avian,

mammalian, and reptilian secondary consumers (Schnell, 1968;

Barrett et al., 2001). Anecdotal evidence of synchronous

population fluctuations in cotton rat and bobwhite populations

have been observed, leading some to hypothesize a trophic

interaction mechanism of synchrony (Errington and Stoddard,

1938; Schnell, 1968; Barrett et al., 2001; Staller et al., 2005).

However, environmental conditions can also influence both

populations, for example, bobwhite chick survival can be sensitive

to rainfall during their restricted breeding season (Terhune et al.,

2019). Alternatively, variation in seasonal temperatures has been

correlated with cotton rat reproductive activity (Goertz, 1965) and

abundance (Rehmeier et al., 2005).

Our objective was to understand the patterns and drivers of

synchrony for two sympatric primary consumers in a complex food

web. Specifically, we wanted to address the following questions:

1) Do bobwhite and cotton rats synchronize consistently across

space and time? 2) What is the relative influence of trophic

interactions vs. exogenous factors on the amount of synchrony

between populations, and 3) does the strength of trophic

interactions increase with increasing synchrony between

populations? Using datasets from sites in their southeastern

geographic ranges, we predicted that bobwhite and cotton rats

would exhibit punctuated but inconsistent periods of synchrony

because the species’ reproductive potential is influenced differently

by environmental variation. In support of Moran’s theorem of

synchrony (Moran, 1953; Stien et al., 2012), we predicted that

periods of synchronous fluctuations would be more closely

associated with exogenous factors because populations of these

species can be sensitive to climatic variation (Eifler and Slade, 1999;

Perez et al., 2002; Hernández et al., 2005; Rehmeier et al., 2005).

Finally, we predicted that trophic interactions (e.g., predation and

competition) would not vary with the relative amount of synchrony

between populations because empirical evidence (Miller and Epstein,

1986; Post and Forchhammer, 2002; Raimondo et al., 2004a) and

theory suggest that exogenous factors drive synchrony in unrelated

species (Moran, 1953; Royama, 1992; Koenig, 2001).
Materials and methods

Study species

Cotton rat and bobwhite distributions overlap in the southern

United States and Mexico. Both species are ~160 g as adults (cotton

rat range: 100 to 225 g; bobwhite range: 140 to 170 g; Cameron,

1999; Brennan et al., 2014) and primarily herbivorous, consuming

grass and forb seeds, fruits, leafy vegetation, and sometimes

invertebrates (Fleharty and Olson, 1969; Campbell-Kissock et al.,

1985). Although they share similar resources, cotton rats and

bobwhite select different vegetation structure. Cotton rat density

generally increases with grass height and density (Goertz, 1964)

whereas bobwhite prefer bunchgrasses and shrubs for cover and

nesting (Wells, 2008). They also differ in life history strategies.
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Cotton rats can breed year-round if environmental conditions are

favorable (Linzey, 1998), while bobwhite reproduction is restricted

to a defined breeding season, primarily May–August (DeVos and

Mueller, 1993).

Both bobwhite and cotton rat populations can be sensitive to

environmental variation. Bobwhite abundance and survival have

been linked to climatic conditions (Speake and Haugen, 1960;

Jackson, 1962; Perez et al., 2002; Hernández et al., 2005).

Although deviations from average seasonal environmental

conditions can influence populations of both species, extreme

weather events (e.g., extreme heat and drought) during the

bobwhite breeding season can have a greater relative impact on

their demographics (Perez et al., 2002; Tri et al., 2012). Similarly,

extreme summer temperatures and cold winters have been shown to

reduce cotton rat reproduction and abundance (Eifler and Slade,

1999; Rehmeier et al., 2005).
Study sites

To investigate the patterns of cotton rat and bobwhite population

fluctuations, we used long-term data from three study sites: Tall

Timbers Research Station (TT) in Leon County, Florida, the Jones

Center at Ichauway (JC) in Baker County, Georgia, and a private

property (Private) in Baker County, Georgia (Private; Figure 1).

Tall Timbers is a 1,600-ha forest in Leon County, Florida, USA,

approximately 33.3 km north of Tallahassee, Florida. Tall Timbers’

landscape is dominated by sparsely distributed pine trees and a diverse

understory of forbs and grasses. Characterized by a humid, subtropical

climate and summer rainy season, TT has an average air temperature

of 19.78°C and an average annual precipitation of 1.50 m.

The Jones Center at Ichauway is a 12,000-ha research facility in

Baker County, Georgia, USA, approximately 20 km southwest of

Newton, Georgia. The Jones Center is dominated by longleaf pine
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(Pinus palustris) and a diverse understory of grasses, forbs, and

shrubs. The climate at JC is characterized by long, hot summers and

cool, short winters (Lynch et al., 1986) with an average annual

temperature of 18.11°C and average annual precipitation of 1.41 m.

The private property in Baker County, Georgia is a 6,000-ha

forest approximately 24 km southwest of Albany, Georgia. In the

Upper Coastal Plain physiographic region, this property is

characterized by sandy-loam soils with low natural fertility

(Palmer et al., 2012). The temperate, subtropical climate receives

an average of 1.41 m of annual precipitation and has an average

annual air temperature of 18.11°C. The dominant vegetation

community is defined by low densi ty upland pines ,

predominantly slash (P. elliottii), longleaf, and loblolly (P. taeda)

and a diverse understory of forbs, legumes, and native warm season

grasses (Yates et al., 1995).
Population data collection

Cotton rats
At TT, we established eight 1.82-ha plots, made up of 100

Sherman live traps (7.62 × 8.89 × 22.86 cm, H. B. Sherman Traps,

Inc., Tallahassee, FL) arranged in a 10 × 10 grid. We placed traps 15

m apart and baited them with oats. At JC, in late July to mid-August

each year from 2003 to 2017, we also trapped on eight plots with

144 Sherman live traps in 12 × 12 grids with 15 m spacing (2.72-ha).

At the private property, each August from 2008 to 2017, we

established four 1.82-ha plots made up of 100 Sherman live traps

arranged in a 10 × 10 grid spaced 15 m apart. We trapped at each of

these locations annually in late July–August (TT: 2002–2017, JC:

2003–2017, Private: 2008–2017), for four consecutive nights. We

trapped cotton rats in August based on the within-year cycles of

cotton rat populations observed in the region, which include annual

peak densities in August each year (Hannon, 2006). We marked
FIGURE 1

Study sites including the Jones Center at Ichauway, Baker Co., GA, a private property in Baker Co., GA, and Tall Timbers Research Station, Leon Co., FL.
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individuals with a unique numeric ear tag (Style 1005-1, National

Band and Tag Co., Newport, KY) and collected data on location.

We released marked animals at place of capture. Our trapping and

handling methods followed the recommendations of the Animal

Care and Use Committee of the American Society of Mammalogists

(Sikes and Animal Care and Use Committee of the American

Society of Mammalogists, 2016). Our methods were approved by

Tall Timbers Research Station under (IACUC permit GB-2001-01-

15), at the Jones Center at Ichauway under the Georgia Department

of Natural Resources (scientific collecting permit 1000528068), and

at the private property under the Georgia Department of Natural

Resources (scientific collecting permit 1000650622).

Bobwhite
We conducted annual autumn covey counts at TT between

September and November from 2002 to 2017 based on the

methodology of Wellendorf and Palmer (2005). Each year, we

randomly established twelve 25-ha quadrants. We placed a

trained observer at the midpoint of each side of the quadrant (4

observers/quadrant). During the 45 minutes before sunrise, we

recorded the estimated distance, bearing, and location of all

calling coveys on a map of the quadrant and surrounding areas.

We determined calling covey locations via triangulation based on

observers’ bearings and distances. We grouped estimated distances

from observer to covey into four categories: 0–100 m, 101–250 m,

251–500 m, and > 500 m. We estimated covey size based on flush

counts conducted following point counts. We used this same

methodology at the private property, where we conducted annual

autumn (September–November) covey counts on four randomly

established 25-ha quadrants from 2008 to 2017.

At JC, we conducted point count covey call surveys on a 92-

station grid covering 6,997-ha from mid-October to early-

November from 2003 to 2017. Beginning 45 minutes before

sunrise, we recorded each covey heard until all calling had ceased.

We grouped estimated distances from observer to covey into five

distance bands: 0–25 m, 25–50 m, 50–100 m, 100–250 m, and 250–

500 m. We assumed 12 bobwhite/covey based on published average

covey size (Janke et al., 2013).
Environmental data collection

We selected a suite of environmental variables to determine the

influence of exogenous factors on patterns of cotton rat and bobwhite

population fluctuations. Enhanced vegetation index (EVI) is an

optimized index that quantifies the “greenness” of vegetation based

on the difference between the visible and near-infrared light reflected

by vegetation (Huete et al., 2006). We chose EVI over the traditionally

used NDVI (normalized difference vegetation index) because EVI has

improved sensitivity to high biomass regions and is less influenced by

cloud cover compared to NDVI (Huete et al., 2006). We downloaded

EVI data from NASA’s MODIS platform (Didan, 2015) using product

MOD13Q1 at a 250 m spatial resolution and 16-day temporal scale.

We averaged these data for seasonal (spring: March–May, summer:

June–August, autumn: September–November, winter: December–
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February) EVI measurements at all sites. Additionally, we focused

on seasonal climatic variation due to the well-established links with

both bobwhite and cotton rat population growth. Specifically, we

obtained seasonal mean precipitation (cm) and temperature (°C) from

NOAA’s National Centers for Environmental Information (NCEI,

2020) closest to each study site (mean distance ~21 km from study

sites) from 2001 to 2017. We paired environmental data from the

winter and spring prior to animal capture, the summer concurrent

with cotton rat and prior to bobwhite capture, and the autumn after

cotton rat and concurrent with bobwhite capture.
Statistical analyses

Animal density estimation
We estimated cotton rat density at TT, JC and the private

property using annual August capture data. We calculated density

based on a subset of Otis’ closed capture models (null (M0), time-

varying (Mt), behavioral response (Mb); Otis et al., 1978; SI 1) using

a conditional likelihood approach of two parameters: capture

probability (p) and recapture probability (c; Huggins, 1989;

Cooch and White, 2012). We chose a closed capture framework

due to the single trapping session each year. We grouped each

capture by “Plot” and “Year.” We used both DAICC and model

weight to identify the most parsimonious model (AICC; Akaike,

1973; Burnham and Anderson, 2002; Burnham and Anderson,

2004). We derived plot-level abundance estimates from the most

parsimonious model using the package RMark (Laake, 2013) in

Program R (R Core Team, 2021). We averaged estimated

abundance across plots within each year to provide a single

annual cotton rat abundance estimate for each site.

We estimated bobwhite density at TT and the private property

based on a global distance function from a subset of available

detection functions in Program DISTANCE (Thomas et al., 2010)

using an information theoretic criterion (AIC; Akaike, 1973) and

model fit using chi-square model fit statistics (Burnham and

Anderson, 1998). We estimated bobwhite density at JC based on

an annual calling rate calculated given daily weather conditions

(Wellendorf and Palmer, 2005), the assumed covey size, and the

number of coveys heard. Different methodologies were used to

estimate density at TT and JC due to differences in data collection

methods across organizations/sites.

Synchrony of cotton rats and bobwhite
To determine if bobwhite and cotton rats consistently synchronize

at each site, across the region, and through time we used concordance

as a proxy for relative synchrony or the coincident population

fluctuations (Gouhier and Guichard, 2014; Borgmann-Winter et al.,

2021) of bobwhite and cotton rats. We measured concordance with a

Kendall’sW test of concordance (kendall.global function) in the vegan

package (Oksanen et al., 2013) in R (R Core Team, 2021). Kendall’sW

is a non-parametric test of agreement among independent measures

(i.e., judges) of same attributes which provides a concordance estimate

ranging from 0 (no concordance) to 1 (full concordance), an F

statistic, and probability (p). We treated cotton rat and bobwhite
frontiersin.org
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densities from each site as judges to measure relative synchrony at the

site level. Then we treated cotton rat and bobwhite densities in each

year as judges to test regional relative synchrony across years. The

magnitude of agreement among judges can be interpreted as slight (0

< W < 0.20), fair (0.20 < W < 0.40), moderate (0.40 < W < 0.60),

substantial (0.60 <W < 0.80), or almost perfect (0.80 <W < 1.0; Landis

and Koch, 1977). We used the default 999 permutations and a Holm

probability correction (Legendre, 2005) with a = 0.05 level of

significance. We conducted post-hoc testing (kendall.post function)

of the results to determine which judges significantly (a ≤ 0.05)

influenced the overall concordance statistic. Each species’ annual

density contributes to overall measures of concordance

independently (Legendre, 2005). In some years, bobwhite or cotton

rat density may have a greater influence than the other on the overall

synchrony of population fluctuations. To acknowledge the effect of

noise in the empirical data and understand how extremes in

population abundances shaped patterns of synchrony, we measured

the patterns the proportion of peaks (maxima) and troughs (minima)

common to both bobwhite and cotton rat populations in time series.

Specifically, we assessed the proportion of concurrent peaks and

troughs using a Monte Carlo randomization to shuffle each species’

time series, destroying both the autocorrelation structure and cross

correlation between series. We assessed peaks and troughs with all

sites pooled (regionally) and at each site individually (locally). We

conducted our analysis using the synchrony package (Gouhier and

Guichard, 2014) in Program R, which computed a p-value based on

the number of randomizations conducted (N = 999).

Drivers of population density
To determine the relative influence of exogenous factors on

bobwhite and cotton rat densities we generated generalized linear

models (GLM) in the glmmTMB package (Magnusson et al., 2017)

in R (R Core Team, 2021). We developed two additive models to

evaluate the linkages between bobwhite and cotton rat densities and

exogenous factors. We averaged our seasonal exogenous factors and

measures of density across sites, providing a single seasonal estimate

of each variable per year. We justified consolidating these data

based on the similar relative synchrony observed across all study

sites. We parameterized the model with a Gaussian distribution and

seasonal estimates of EVI, precipitation, and temperature, and the

annual densities of bobwhite and cotton rats (Models 1 and 2). Prior

to modeling, we scaled each variable and analyzed the variance

inflation factor (VIF) in package car (Fox et al., 2019) in R (R Core

Team, 2021) to assess each temporal dataset for multicollinearity of

explanatory variables. We removed variables with > 2.5 VIF

(Allison, 1999) one-by-one to reduce correlation.

Model 1:
Fron
Bobwhite Density ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm)
Model 2:
Cotton Rat Density ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm)
We assessed model fit based on visual inspection of the

normality of residuals and met the assumptions of normality. We

computed aWald-z-statistic from aWald chi-square test (Wald and
tiers in Ecology and Evolution 05
Wolfowitz, 1943) to calculate the p-values of the explanatory

variables in each model with a significance level of a ≤ 0.05. We

evaluated the relative strength of these predictors by comparing

their scaled beta estimates and displaying them graphically.
Drivers of synchrony

To determine the relative influence of trophic interactions and

exogenous factors on synchrony we generated a generalized linear

model (GLM) in the glmmTMB package (Magnusson et al., 2017) in

R (R Core Team, 2021). We developed an additive model to evaluate

the linkages between our measure of regional relative synchrony

(Kendall’s W averaged from cotton rat and bobwhite Kendall’s Ws),

exogenous factors, and trophic interactions (e.g., bobwhite and cotton

rat densities). We averaged our seasonal exogenous factors and

measures of density across sites, providing a single seasonal

estimate of each variable per year. We justified consolidating these

data based on the similar relative synchrony observed across all study

sites. We parameterized the model with a Gaussian distribution and

seasonal estimates of EVI, precipitation, and temperature, and the

annual densities of bobwhite and cotton rats (Model 3). Prior to

modeling, we scaled each exogenous factor variable and analyzed the

variance inflation factor (VIF) in package car (Fox et al., 2019) in R (R

Core Team, 2021) to assess each temporal dataset for

multicollinearity of explanatory variables. We removed variables

with > 2.5 VIF (Allison, 1999).

Model 3:
Relative Synchrony ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm) + Cotton Rat Density +

Bobwhite Density
For each parameter, we computed a Wald-z-statistic from a

Wald chi-square test (Wald and Wolfowitz, 1943) to calculate the

p-values of the explanatory variables. We considered the

explanatory relevance of each parameter, using a significance

level of a ≤ 0.05. We evaluated the relative strength of these

predictors by comparing their scaled beta estimates and displaying

them graphically.

Trophic interactions and synchrony
To determine if trophic interactions were influenced by the

amount of synchrony between the populations, we regressed the

density of each species against an interaction between the other

species density and our measure of relative synchrony (Kendall’sW;

Models 4 and 5). We also included exogenous factors (significant

variables from Model 3) to account for their known influence on

densities and synchrony. We parameterized the models as a GLM in

the glmmTMB package (Magnusson et al., 2017) in R (R Core

Team, 2021) with the bobwhite and cotton rat densities modeled to

fit with a Gaussian distribution and evaluated the residuals to

determine if any assumptions of normality were violated.

Models 4 and 5:
Bobwhite Density ~ Significant Exogenous Factors fromModel

3 + Cotton Rat Density + Relative Synchrony + Cotton Rat

Density*Relative Synchrony
frontiersin.org

https://doi.org/10.3389/fevo.2023.1159464
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Hooker et al. 10.3389/fevo.2023.1159464

Fron
Cotton Rat Density ~ Significant Exogenous Factors from

Model 3 + Bobwhite Density + Relative Synchrony +

Bobwhite Density*Relative Synchrony
For each parameter, we computed a Wald-z-statistic from a

Wald chi-square test (Wald andWolfowitz, 1943) to calculate the p-

values of the explanatory variables. We considered the explanatory

relevance of the interaction parameter as well as other variables,

using a significance level of a ≤ 0.05. We evaluated the relative

strength of these predictors by comparing their scaled beta

estimates and displaying them graphically.
Results

Estimates of animal density

Cotton rats
The most parsimonious model of cotton rat density across sites

was the behavioral response model p(.),c(.): TT: AICc = 19099.67,

model weight: 1.0; JC: AICc = 10175.56, model weight: 1.0; Private

property: AICc = 2753.53, model weight: 0.99 (SI 2). Cotton rat

density averaged 25.40 ± SE 1.46 cotton rats/ha from 2002 to 2017

at TT, 10.90 ± SE 1.18 cotton rats/ha from 2003 to 2017 at JC, and

15.8 ± SE 3.74 cotton rats/ha from 2008 to 2017 at the private

property (SI 3).

Bobwhite
We estimated the density of bobwhite at TT and the private

property based on the most competitive detection model, with a

uniform detectability with simple polynomial adjustments, AIC =

146.5 (Wellendorf and Palmer, 2005). Bobwhite density averaged 3.48

± SE 0.19 birds/ha at TT, 4.82 ± SE 0.34 birds/ha at the private property,

and varied little at JC, averaging 1.69 ± SE 0.05 birds/ha (SI 4).
tiers in Ecology and Evolution 06
Environmental variation

Enhanced vegetation index varied by site and year and was, on

average, highest in summer (0.48 ± SE 0.007) and lowest in winter

(0.27 ± SE 0.003) across all sites. Precipitation varied across years and

sites. Precipitation peaked in summer (30.2 ± SE 3.22 cm) and was

lowest in autumn (14.7 ± SE 2.25 cm). Air temperature varied across

seasons and years, with the highest average temperatures in summer

(27.20 ± SE 0.15° C) and lowest in winter (11.70 ± SE 0.36° C) across

all sites (SI 5).
Drivers of population density

After removing highly correlated environmental variables

(winter, spring, and autumn EVI and winter, autumn, and

summer precipitation) using VIF, our model of bobwhite density

included winter temperature, spring precipitation and temperature,

summer EVI and temperature, and autumn temperature as

explanatory variables. Bobwhite density was significantly

associated with previous spring precipitation (b = 0.22 ± SE 0.11,

z = 1.98, p = 0.05) and concurrent autumn temperature (b = 0.26 ±

SE 0.13, z = 2.03, p = 0.04; Table 1).

Our model predicted that as prior spring precipitation increases

from 5.5 to 32.51 cm, bobwhite density would increase from 2.82 ±

SE 0.19 to 3.49 ± SE 0.20 individuals per hectare. Similarly, as

autumn temperature increases from 18.74 to 23.28°C, bobwhite

density is predicted to increase from 2.58 ± SE 0.29 to 3.63 ± SE 0.26

bobwhite per hectare (Figure 2).

Our model of cotton rat density included the same

environmental variables as our model of bobwhite density except

autumn temperature because those data were collected after cotton

rat density each year. Cotton rat density was significantly associated
TABLE 1 Generalized linear mixed model results of the exogenous factors influence on bobwhite and cotton rat densities at the Jones left at
Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Bobwhite Density

Winter Temperature 0.25 0.14 1.81 0.07

Spring Precipitation 0.22 0.11 1.98 0.05*

Spring Temperature −0.02 0.11 −0.22 0.83

Summer EVI −0.08 0.10 −0.76 0.45

Summer Temperature −0.08 0.13 −0.63 0.53

Autumn Temperature 0.26 0.13 2.03 0.04*

Cotton Rat Density

Winter Temperature 4.78 1.49 3.21 0.001*

Spring Precipitation 4.30 1.39 3.10 0.002*

Spring Temperature −0.58 1.31 −0.44 0.66

Summer EVI 4.19 1.31 3.21 0.001*

Summer Temperature 3.12 1.52 2.05 0.04*
An autumn temperature was not included in the cotton rat density model because it was collected after cotton rat density each year. Variables with p ≤ 0.05 were considered statistically significant (*).
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with a number of variables, including positive significant

relationships with winter (b = 5.83 ± SE 1.40, z = 4.17, p < 0.001)

and summer temperature (b = 2.95 ± SE 1.40, z = 2.11, p = 0.04),

spring precipitation (b = 4.21 ± SE 1.29, z = 3.26, p = 0.001), and

summer EVI (b = 4.81 ± SE 1.25, z = 3.84, p < 0.001; Table 1).

Our model of cotton rat density predicted that as winter

temperature increases from 8.81 to 14.46° C, cotton rat density

would increase from 9.76 ± SE 3.03 to 27.84 ± SE 3.13 cotton rats/
Frontiers in Ecology and Evolution 07
ha. Similarly, as summer temperature increases from 26.38 to 28.24° C,

cotton rat density is predicted to increase from 13.93 ± SE 2.60 to 23.67

± SE 2.75 cotton rats/ha. Our model predicted that as spring

precipitation increases from 5.15 to 32.51 cm, cotton rat density will

double, increasing from 12.59 ± SE 2.31 to 25.45 ± SE 2.53 individuals/

ha. Our model predicted that as summer EVI increases from 0.43 to

0.55, cotton rat density will nearly triple, increasing from 12.49 ± SE

2.83 to 29.32 ± SE 3.56 cotton rats/ha (Figure 3).
FIGURE 2

Raw data (gray dots) and model-predicted bobwhite density (black line) ± 95% confidence intervals (gray band) as prior spring precipitation and
concurrent autumnal temperature increases at the Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station
from 2002 to 2017.
FIGURE 3

Raw data (gray dots) and model-predicted cotton rat density (black line) ± 95% confidence intervals (gray band) as prior winter temperature, prior
spring precipitation, and concurrent summer EVI and temperature increase at the Jones Center at Ichauway, a private property in Baker Co., GA, and
Tall Timbers Research Station from 2002 to 2017.
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Synchrony of cotton rats and bobwhite

Regionally, when we pooled cotton rat and bobwhite density

across sites as judges (N = 2), we found significant concordance

(W = 0.76, F3 = 3.09, p < 0.001, c2 = 58.93, corrected p < 0.001)

indicating substantial levels of regional relative synchrony. At the

site level, relative synchrony ranged from substantial at the Jones

Center (W = 0.73; p = 0.05) and private property (W = 0.79;

p = 0.04) to almost perfect at Tall Timbers (W = 0.90; p <0.001;

Table 2). Overall, we found significant but fair levels of regional

synchrony across years (W = 0.40, F32 = 20.87, p < 0.001, c2 = 25.75,

corrected p = 0.001). Post-hoc testing revealed that the strongest

indication of synchrony were bobwhite and cotton rat densities in

2003, 2005, 2006, 2007, 2016, and 2017 (allW = 0.63), and bobwhite

from 2011 to 2016 (all W = 0.63; SI 6). The regional proportion of

concurrent peaks of bobwhite and cotton rat population maxima

and minima was 56% (p = 0.01) suggesting synchrony occurred

when abundances were relatively high and low.
Drivers of synchrony

After removing highly correlated environmental variables

(winter, spring, and autumn EVI and winter, autumn, and

summer precipitation), our model of relative synchrony included

winter temperature, spring precipitation and temperature, summer

EVI and temperature, autumn temperature, and bobwhite and

cotton rat densities as explanatory variables. Relative synchrony
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was negatively associated with bobwhite density (b = −0.26 ± SE

0.10, z = −2.68, p = 0.007; Table 3). Our model predicted that as

bobwhite density increases from 1.82 to 4.49 individuals per

hectare, relative synchrony will decrease from 0.95 ± SE 0.19 to

0.10 ± SE 0.13 (Figure 4).
Trophic interactions and synchrony

We found evidence that both bobwhite and cotton rats were

positively associated with the density of the other species. We

modeled bobwhite density with the significant environmental

factors from Model 1 (spring precipitation and autumn

temperature), relative synchrony, and the interaction of relative

synchrony and cotton rat density. Bobwhite density was positively

associated with cotton rat density (b = 0.30 ± SE 0.11, z = 2.58, p =

0.01; Table 4) but not the interaction of cotton rat density and

synchrony. Our model predicted that as cotton rat density increases

from 6 to 39 individuals/ha, bobwhite density will increase from

2.71 ± SE 0.20 to 3.87 ± SE 0.30 bobwhite/ha (Figure 5).

Wemodeled cotton rat density from the significant environmental

variables from Model 2 (winter and summer temperature, spring

precipitation, and summer EVI), relative synchrony, bobwhite density,

and the interaction of relative synchrony and bobwhite density.

Cotton rat density was positively associated with bobwhite density

(b = 6.83 ± SE 1.45, z = 4.70, p < 0.001) and negatively associated with

the interaction of relative synchrony and bobwhite density (b = −2.71

± SE 1.03, z = −2.63, p = 0.009; Table 4). Our model of cotton rat
TABLE 3 Generalized linear mixed model results of the exogenous and trophic interaction factors on relative synchrony at the Jones Center at
Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Relative Synchrony

Winter Temperature 0.09 0.06 1.59 0.11

Spring Precipitation −0.03 0.05 −0.63 0.53

Spring Temperature −0.008 0.04 −0.23 0.15

Summer EVI −0.09 0.07 −1.33 0.30

Summer Temperature −0.07 0.06 −1.04 0.82

Autumn Temperature 0.09 0.06 1.44 0.18

Cotton Rat Density 0.12 0.10 1.26 0.21

Bobwhite Density −0.26 0.10 −2.68 0.007*
Variables with p ≤ 0.05 were considered statistically significant (*).
TABLE 2 Results of post-hoc testing of Kendall’s W showing the synchrony of cotton rats and bobwhite at each site relative to overall concordance (W).

Site Kendall’s W F p Corrected p

Jones Center 0.73 2.73 0.05* 0.05*

Private 0.79 3.87 0.04* 0.04*

Tall Timbers 0.90 9.46 <0.001* <0.001*
Kendall.post provides the contribution to overall concordance (W), F statistic, probability of the F statistic, and the probability of the Holm correction (significance of a ≤ 0.05, denoted by *).
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density predicted that as bobwhite density increases from 1.82 to 4.02

bobwhite/ha, cotton rat density will increase from 4.45 ± SE 3.07 to

26.93 ± SE 1.99 cotton rats/ha (Figure 5). Our model indicated that as

synchrony between species increases, the association between

bobwhite density on cotton rat density decreases. At low levels of

concordance (W = 0.20), our model predicted a positive association

between bobwhite density and cotton rat density, predicting that as

bobwhite density increases from 1.82 to 4.02 bobwhite/ha, cotton rat

density would increase from 0.0 ± SE 5.58 to 30.88 ± SE 2.79 cotton

rats/ha. Similarly, at fair levels of synchrony (W = 0.31), as bobwhite

density increases from 1.82 to 4.02 individuals/ha, cotton rat density is

predicted to increase from 0.06 ± SE 4.35 to 29.10 ± SE 2.19 cotton
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rats/ha. At the highest levels of synchrony observed between species

(W = 0.63), as bobwhite density increases from 1.82 to 4.02

individuals/ha, cotton rat density is predicted to increase from 10.51

± SE 2.49 to 23.93 ± SE 2.77 cotton rats/ha (Figure 6).
Discussion

In our examination of a complex predator–prey system, we

found evidence of regional and site-specific synchrony between two

taxonomically divergent primary consumers demonstrated by both

substantial levels of concordance and high proportions of
FIGURE 4

Raw data (gray dots) and model-predicted relative synchrony (black line) ± 95% confidence intervals (gray band) as bobwhite density increases at the
Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
TABLE 4 Generalized linear mixed model results of the global model of exogenous factors and synchrony at the Jones Center at Ichauway, two sites
at a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Bobwhite Density

Spring Precipitation 0.04 0.12 0.37 0.71

Autumn Temperature 0.33 0.10 3.21 0.001*

Relative Synchrony −0.15 0.11 −1.35 0.18

Cotton Rat Density 0.30 0.11 2.58 0.01*

Relative Synchrony*Cotton Rat Density 0.10 0.10 1.01 0.31

Cotton Rat Density

Winter Temperature 1.09 1.35 0.81 0.42

Spring Precipitation 0.99 1.08 0.92 0.36

Summer EVI 6.22 0.95 6.53 <0.001*

Summer Temperature 2.69 0.94 2.87 0.004*

Relative Synchrony 0.64 1.04 0.62 0.54

Bobwhite Density 6.83 1.45 4.70 <0.001*

Relative Synchrony*Bobwhite Density −2.71 1.03 −2.63 0.009*
Cotton rat and bobwhite density models include only the statistically significant exogenous variables from Table 1. Variables with p ≤ 0.05 were considered statistically significant (*).
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concurrent maxima and minima. Unlike many synchronous

populations, we found negligible evidence that variation in the

relative amounts of synchrony were tied to exogenous factors (Post

and Forchhammer, 2002; Stien et al., 2012). We did find that

trophic interactions between cotton rats and bobwhite were

associated with relative synchrony between these populations, but

these interactions appeared to weaken in years of greater synchrony

(Lee et al., 2020). If populations were synchronized by mechanisms

like predation and competition, we would have expected a positive

association between synchrony and trophic interactions (Ims and

Steen, 1990; De Roos et al., 1991). Accordingly, our research

suggests that the patterns of fluctuation among taxonomically

divergent primary consumers in our system cannot be easily
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explained by our current suite of theoretical constructs that focus

solely on exogenous factors (Moran, 1953) or trophic predator–prey

interactions (Hagen, 1952; Lack, 1954; Angelstam et al., 1984) and

may be influenced by the interaction of these factors (Coulson et al.,

2004; Stenseth et al., 2004).

The pattern of synchrony between bobwhite and cotton rats

varied considerably across years, fluctuating from no

relationship to moderate synchrony. Declines in relative

synchrony were associated with increasing bobwhite density.

When regional synchrony between the populations was highest

(2003, 2005, 2006, 2007), environmental conditions were

characterized by above average greenness across multiple

seasons and summer precipitation. During those same years,
FIGURE 5

Raw data (gray dots) and model-predicted cotton rat and bobwhite density (black line) ± 95% confidence intervals (gray band) as the other species’
density increases at the Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
FIGURE 6

Raw data (gray dots) and model predicted relationship of the interaction of bobwhite density and relative synchrony on cotton rat density at the
Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
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bobwhite density which are known to be sensitive to temperature

and precipitation (Table 1; Lusk et al., 2001), was low; and cotton

rat density, sensitive to seasonal greenness, precipitation, and

temperature (Table 1; Reed and Slade, 2006), was variable.

Alternatively, during years of reduced synchrony (2002, 2004,

2010), environmental conditions were characterized by above

average spring precipitation and below average winter and

summer precipitation as well as reduced cotton rat densities

and average bobwhite densities. These patterns suggest that

differences in synchrony can potentially be partially explained

by the subtly different ways climatic conditions influence the

population densities of these taxonomically divergent species.

Yet they do not conform well with Moran (1953), commonly

used to explain patterns between populations, suggests

synchrony occurs during extreme weather events that reduce

population densities. Following this concept, we would have

expected increases in synchrony when bobwhite and cotton rat

densities were both at their lowest. Based on maxima and

minima across sites, bobwhite and cotton rat populations

fluctuated concurrently in more than 50% of the study years

(SI 7); however, these fluctuations were not clearly linked to

exogenous factors as indicators of population change. Across

sites, cotton rats appear to deviate from synchronous

fluctuations more frequently than bobwhite (SI 7), possibly

due to their reproductive plasticity relative to bobwhite’s

defined breeding season. Cotton rats’ natural history facilitates

opportunistic breeding when environmental conditions are

favorable (Linzey, 1998), while bobwhite are restricted to a

defined breeding season (Stoddard, 1931). Accordingly,

although exogenous factors appeared to influence the

population dynamics of each species individually and the

proportions of concurrent maxima and minima were

substantial across sites, there was not a strong relationship

between synchrony and exogenous factors. However, it is

important to note that we did not observe the extreme weather

events that commonly support Moran (1953).

While both populations were positively associated with one

another, only cotton rats were influenced by the interaction of

relative synchrony and bobwhite density (Table 4). Numerous

observational studies have suggested that cotton rats positively

influence bobwhite density through generalist predators switching

their prey selection (Staller et al., 2005; Ellis-Felege et al., 2017;

Palmer et al., 2019). Predation by birds of prey and mammals is the

leading cause of bobwhite mortality at all life stages (Burger et al.,

1995; Rollins and Carroll, 2001; Cox et al., 2004). Similarly, avian

and mammalian predators account for the majority of mortalities of

adult cotton rats (Morris et al., 2011; McCampbell et al., 2023).

Moreover, seasonal predation pressure has been shown to

considerably alter both cotton rat (Wiegert, 1972) and bobwhite

populations (Carroll et al., 2007). We found that as synchrony

between bobwhite and cotton rats increases, the positive association

of bobwhite density on cotton rat density declines, possibly due to

prey switching by predators when both species populations are at

relatively high densities. This differs from the trophic interactions
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commonly attributed to synchrony in taxonomically divergent

primary consumer species. The alternative prey hypothesis (APH)

suggests that predators are selective and synchronize prey

population densities by depredating their primary prey

(i.e., numerically dominant) until its population declines before

switching to an alternative prey and instigating its decline (Hagen,

1952; Lack, 1954; Angelstam et al., 1984). We have no evidence that

the generalist predators in our system are selective (Godbois et al.,

2003; Cherry et al., 2016; Rectenwald et al., 2021), and if the APH

was occurring, we would expect an inverse relationship between

prey densities. As cotton rat densities are reduced by predation,

bobwhite density would increase to synchronize with cotton rat

densities (Angelstam et al., 1984). However, we observed periods of

elevated synchrony after years of both increasing and decreasing

cotton rats.

Another explanation of trophic interactions is the shared

predator hypothesis which posits that predators can synchronize

prey species populations through indiscriminate predation of

primary and alternate prey to cause simultaneous increases and

declines (Norrdahl and Korpimäki, 2000). Synchrony seemed to

occur after years of both increasing and decreasing cotton rats;

however, these associations were inconsistent. Under the shared

predator hypothesis, we would also expect that alternative prey (e.g.,

bobwhite) and primary prey (e.g., cotton rat) would consistently

decline after spikes in the population of the numerically dominant

prey, which should facilitate increased predator activity and

encounter rates (Bety et al., 2002; Ježková et al., 2014); however,

we did not see evidence of this pattern either (Ydenberg, 1987; Ims

and Steen, 1990).

Without a clear mechanistic explanation of the patterns in our

data, we propose an alternative climate- mediated predation framework

for understanding the linkages of prey in complex predator–prey

systems with numerous non-selective predators. First, in keeping

with classic bottom-up theories of regulation (White, 1978; Hunter

and Price, 1992), exogenous conditions influence the populations of

each prey species via availability of resources (Meserve et al., 2001;

Meserve et al., 2009). Next, population fluctuations of the numerically

dominant prey changes predator communities. Finally, changes in the

predator community alter the predation risk and populations of species

with the same predators in a manner consistent with the shared

predator hypothesis. While this hypothesis needs to be tested, there

is substantial support for its components, 1) fluctuations of numerically

dominant prey are closely linked to climate-induced changes in

resources (Lima et al., 1999; Ernest et al., 2000), 2) fluctuations of

numerically dominate prey are tied to changes in populations and

communities of their predators (Post and Forchhammer, 2002;

Beaugrand et al., 2009; Turkia et al., 2020), and 3) changes in

predator communities alter the population demographics of species

with the same predators (Rooney et al., 2006; Stoessel et al., 2019;

Quéroué et al., 2021). This framework (Figure 7) is more consistent

with many patterns of our data than existing constructs.

Although we used data from three sites across 15 years, our

study had several limitations which should be noted. Most

importantly, because of the coarse spatial and temporal
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resolution (i.e., annual) of our population and remote sensing

data, the patterns in our data might change at more biologically

relevant temporal and spatial scales that more closely track

species’ interactions. Another important caveat was that cotton

rat and bobwhite population data were collected in different

areas of each study site, which may have inadvertently influenced

our findings as the species were not experiencing the same

microclimatic conditions. Moreover, while annual population

density data were collected at times of peak density, our sampling

occurred at slightly different seasons for each species, potentially

limiting our ability to detected linkages between them. Both

species have an average lifespan of approximately 6 months

(Brennan, 1999; Curlee and Cooper, 2012; McCampbell et al.,

2023), suggesting limited annual carryover of population

densities; however, we did not investigate this assumption with

the inclusion of time lags. Additionally, without data on predator

density we were unable to fully investigate the drivers of

bobwhite and cotton rat population fluctuations. Although
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cotton rats are the most commonly trapped small mammal at

these sites, they are not the only small mammals in these systems.

Fluctuations in other small mammal populations, most notably

Peromyscus gossypinus (cotton mouse) andMus musculus (house

mouse) may have influenced our results and therefore these

populations should be acknowledged and accounted for in future

studies. Another concern was the variation in population data

collection, especially bobwhite density, across sites. While two

sites used the same methodology, the assumptions made

regarding covey size at the Jones Center may have skewed the

data and influenced the results. Lastly, our lack of strong effects

may have been influenced by the removal or mesomammalian

predators and supplemental feeding that occurred across all sites

and throughout the study. Although we have identified factors

associated with synchrony within our dataset, further

investigation should aim to collect population and predator

data on finer spatial and temporal scales to capture the within-

year variation in population fluctuations.
FIGURE 7

Climate-mediated predation framework proposed to explain the simultaneous interactions of the environment, predators, and prey species in
ecosystems with numerous non-selective predators.
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While a climate-mediated predation framework may provide a

better explanation of the fluctuation patterns in populations of

taxonomically divergent primary consumers in complex food webs,

there is considerable work that needs to be done before attributing

mechanisms to these patterns. Specifically, we suggest two important

steps to determine the applicability of this construct. First, there is a

need to link survival, cause-specific mortality, predator populations,

and specific resources (i.e., vegetation characteristics, food availability)

to the annual fluctuations of primary and alternative prey species. To do

this, contrary to the coarse resolution of this study, research will need to

investigate these populations on finer spatiotemporal scales that allow

for the inference of mechanism. Second, we advocate for manipulations

of resources for the numerically dominant prey to determine if they

lead to population increases, alter predator communities, and change

the predation rate of other prey populations in the system. We present

this paper as a foundation to generate a greater understanding of the

integral drivers of synchrony within complex systems.
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Quéroué, M., Barbraud, C., Barraquand, F., Turek, D., Delord, K., Pacoureau, N.,
et al. (2021). Multispecies integrated population model reveals bottom-up dynamics in
a seabird predator–prey system. Ecol. Monogr. 91, 01459. doi: 10.1002/ecm.1459

Raimondo, S., Liebhold, A. M., Strazanac, J. S., and Butler, L. (2004a). Population
synchrony within and among Lepidoptera species in relation to weather, phylogeny,
and larval phenology. Environ. Entomol. 29, 96–105. doi: 10.1111/j.0307-
6946.2004.00579.x
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