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Animals are faced with a variety of dangers or threats, which are increasing
in frequency with ongoing environmental change. While our understanding
of fearfulness of such dangers is growing in the context of predation and
parasitism risk, the extent to which non-trophic, interspecific dangers elicit
fear in animals remains less appreciated. We provide an experimental test
for fear responses of savannah ungulates to a dominant and aggressive
megaherbivore, the African bush elephant (Loxodonta africana), and contrast
responses to an apex predator known to elicit fear in this system. Using an
automated behavioural response system, we contrast vigilance and run
responses of ungulates to elephant, leopard (Panthera pardus), and control
(red-chested cuckoo Cuculus solitarius) vocalizations. Overall, we find that
ungulates responded to elephant calls, both in terms of an increase in run
and vigilance responses relative to controls. The magnitude of most behav-
ioural responses (four of six considered) to elephant vocalizations were not
significantly different than responses to leopards. These results suggest that
megaherbivores can elicit strong non-trophic fear responses by ungulates
and call to broaden frameworks on fear to consider dominant species,
such as megaherbivores, as key modifiers of fear-induced interactions.
1. Introduction
Animals live in a dangerousworld.When exposed to dangers (e.g. predators, fire),
animals often respond through fear-based behavioural responses [1]. Fear is a
psychological state that emerges in response to a perceived danger or threat,
and it is often quantified based on behaviour, such as fleeing and avoidance [2].
Understanding fear responses by animals to dangers is crucial, as such responses
can influence population dynamics, alter species interactions and initiate trophic
cascades, thereby reshaping entire communities [3,4]. One common source of
danger is trophic interactions. For instance, fear responses to predators are increas-
ingly well understood [5–7], and there is growing recognition of fear responses to
parasites [8,9]. Yet if, and to what extent, animals fear other interspecific encoun-
ters remains poorly understood [1]. In particular, large, dominant or aggressive
species in a community could present non-consumptive threats to species [10–12].

Megaherbivores (mammalian herbivores greater than 1000 kg) are large,
dominant, and often aggressive community members that have profound effects
on ecological processes that shape ecosystems [13–15]. Despite these well-known
effects on ecosystem structure and function [16], the role ofmegaherbivores on the
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behaviour of other species remains less appreciated. Some
studies suggest megaherbivores can be aggressive to other her-
bivorous mammals and exclude them fromwatering holes and
foraging sites [17–19]. Yet, it remains unknown if animals gen-
erally exhibit fear when they encounter megaherbivores as
experiments to understand species fear responses to megaher-
bivores remain absent.

To determine if megaherbivores can induce fear in
other mammals, we contrasted the behavioural responses of
medium- to large-sized ungulates to cues of a megaherbivore,
the African bush elephant (Loxodonta africana), relative to
a common predator, the leopard (Panthera pardus), in an
African savannah. To isolate behavioural responses, we used
an automated behavioural response (ABR) system comprised
of a motion-activated camera and speaker [20]. This ABR
system allowed quantification of reactive responses (as
opposed to proactive responses [21]) of ungulates to different
cues. Prior research demonstrated that ungulates in our
system show strong fear responses to leopards [22]. In our
study area, elephant populations have been extirpated for
over 100 years, although transient elephants occasionally use
the region. While such limited exposure may lead to ungulate
naivety of elephant cues, predator recognition by prey from
other ecosystems show that some species have an evolved abil-
ity to recognize predators and threats which they canmaintain
for several generations after extirpation [23,24]. Consequently,
we predicted that ungulates would be fearful of elephant
cues, but that such fear would be weaker than fear for
predators. By contrasting responses of elephant cues to the
well-understood effects of predators on fear responses by
prey, our experimental design provides a benchmark for inter-
preting the magnitude of potential fear responses of
megaherbivores relative to apex predators.
2. Methods
(a) Study area
We conducted this study in low-lying savannahs at three adjacent
nature reserves—Mbuluzi Game Reserve (30 km2), Mlawula
Nature Reserve (165 km2) and Hlane Royal National Park
(220 km2)—that form the majority of the Lubombo conservancy in
Eswatini. Dominant overstory trees include marula (Sclerocarya
birrea) and knobthorn (Senegalia nigrescens); dense sicklebush
(Dichrostachys cinerea) dominates the shrub layer [25]. Common
grasses includeGuinea grass (Panicummaximum) and redgrass (The-
meda triandra). A variety of herbivorous ungulates occur on the
reserves, including impala (Aepyceros melampus), nyala (Tragelaphus
angasii), and wildebeest (Connochaetes taurinus). Outside of small
enclosures (not used in this study), there has not been an extant
population of elephants on these reserves in over 100 years.
(b) ABR system and deployment
To understand the fear response of ungulates to elephants, we
used ABRs to play recordings of three vocalizations: elephants,
leopards and procedural controls [20,22,26]. The leopard is the
primary apex predator in our study area and has previously
been shown to induce the greatest fear responses from ungulates
in this area [22]. We included leopard vocalizations to contrast
with potential elephant responses. For a procedural control, we
played vocalizations of the red-chested cuckoo (Cuculus solitar-
ius), a common species that vocalizes throughout the day and
night in this area.
Between May–July 2022, we placed nine ABRs greater than
600m apart, further than the daily movements of the common
ungulates on our study site [22]. We mounted ABRs following
Epperly et al. [22]. We set cameras on video, and they began record-
ing once the motion sensor was activated and continued for 20–30 s
(night and day, respectively). We set the ABRs to record for 2.5 s
before a randomly selected 10 s treatment vocalization was broad-
cast [22,25]. For treatments, we used 10 different calls (exemplars)
for each treatment (for elephants, five rumbles and five trumpets).
For more details, see electronic supplementary material, S1.

(c) Analyses
We scored behaviors before and after the start of the vocalization
for each independent video (greater than 60 min between vocaliza-
tions of the same species) using Solomon Coder software (Solomon
Coder version beta 17.03.22). We focused on two behaviors.
First, we determined if the animal(s) ran after the vocalization
(see [22,27]). Second, we scored vigilance behaviors using the
broad, established categorizations for ungulates of ‘head up’ = vig-
ilance and ‘head down’ = non-vigilance [27,28]. For vigilance
responses, we only used observations for ungulates that did not
run. Formore details on scoring videos, see electronic supplementary
material, S1.

We first used a chi-squared test to ensure there were no differ-
ences in the proportions of treatments that were randomly applied.
Second, to ensure there were not differences in ungulates’ pre-
treatment behaviour, we compared the proportion of time vigilant
prior to vocalizations using a generalized linear mixed model
(GLMM) with a beta error distribution in the glmmTMB package
[29] in R [30]. For beta GLMMs, we transformed vigilance
responses to account for extreme values ðy ¼ 0 or 1Þ as:
y0 ¼ [y(N � 1) þ 0:5)�=N, where y0 is the transformed response, y
is the original response, and N is the sample size [31]. We con-
sidered the proportion of time vigilant before the vocalization as
a function of treatment, and we used ABR locations as a random
effect. Third, we evaluated run (probability of running) and vigi-
lance (proportion of time vigilant) responses to treatments using
similarly parameterized GLMMs for all ungulates combined and
separately for individual species with at least 15 observations per
treatment (electronic supplementary material, tables S1, S2). For
each model, we used the emmeans package [32] to calculate
estimates and SEs and to conduct pairwise comparisons among
treatments with Tukey’s adjustment term. In one test, complete
separation of run response data occurred because 0 individuals
ran to control playbacks. In this case, we used the blme package
[33] to fit a similar model but imposing vague normal priors
(mean = 0, s.d. = 3) on treatment effects. Finally, we re-ran models
that decomposed the elephant treatments into the two call
types, rumble versus trumpet, to assess if and how elephant call
type might influence fear responses, as trumpet calls are likely
more aggressive vocalizations than rumbles [34].
3. Results
We recorded a total of 483 scorable independent videos from10
target species (electronic supplementary material, tables S1,
S2). Combined across species, there was a strong overall
effect of treatments (x2 ¼ 61:1, p < 0.0001), where individuals
ran significantly more frequently to both elephant and leopard
vocalizations compared to control (bird) vocalizations (elec-
tronic supplementary material, table S3). The magnitudes of
effects were large: running was 2.8× more frequent to elephant
vocalizations and 3.9× more frequent to leopard vocalizations
than to controls (figure 1a). Animals also ran significantly
more (40%) to leopard than to elephant vocalizations
(figure 1a, electronic supplementary material, table S3). For
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Figure 1. Fear responses of ungulates to treatments. (a) The probability of running and (b) the proportion of time spent vigilant (SEs) by ungulates in response to elephant,
leopard and control (red-chested cuckoo) vocalizations. In both, shown are responses of all ungulate herbivores combined and responses for ungulates with at least
15 observations per treatment. For elephant treatments, we decompose vocalization playbacks (elephant–pooled) into responses to elephant rumbles and trumpets.
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the animals that did not run, therewas a strong overall effect of
treatments on vigilance (x2 ¼ 29:06, p < 0.0001), where they
significantly increased vigilance after the vocalizations of ele-
phants (β = 0.68, p = 0.0001) and leopards (β = 0.88, p < 0.0001)
relative to controls. However, there was no difference between
the amount of post-treatment vigilance between elephant and
leopard treatments (β =−0.20, p = 0.50; figure 1b, electronic
supplementary material, table S4). We found no difference in
vigilance among treatments (x2 ¼ 0:45, p = 0.80) in the pre-
treatment behaviour for the 2.5 s prior to vocalizations. When
pooling across species, run and vigilance responses to both
trumpet and rumble calls of elephants were greater than con-
trols and there was no significant difference in responses to
elephant trumpets versus rumbles ( p > 0.6; electronic sup-
plementary material, table S5, S6, figure S1). Yet there was a
slight tendency for trumpet calls to elicit more run responses
than rumbles: response to rumbles was less than leopards
( p = 0.007) but response to trumpets was not (p = 0.159).

We found variation in the response of the most commonly
detected species, impala (n = 118), nyala (n = 144), andwildebe-
est (n = 65). Wildebeest and impala showed a similar pattern:
both ran more in response to elephant (wildebeest =
3.8× more; impala = 3.1× more) and leopard (wildebeest =
4.8× more; impala = 4.5× more) vocalizations than to controls
(figure 1a). Yet, we found no significant differences between
run responses to elephant (rumbles and trumpets pooled)
and leopard vocalizations (electronic supplementary material,
table S3). In contrast, nyala ran more from leopard vocaliza-
tions than both elephant and control vocalizations and we
found no difference between nyala run response to elephant
and control vocalizations (figure 1a, electronic supplementary
material, table S3). For vigilance responses, we had sufficient
sample size only for nyala to test effects of treatments. There
was an overall effect of treatments on vigilance (x2 ¼ 8:39,
p = 0.015); nyala significantly increased vigilance to elephant
(β = 0.51, p = 0.041) and leopard (β = 0.77, p < 0.008) treatments
relative to controls. Therewas no significant difference in nyala
vigilance to elephants and leopards (electronic supplementary
material, table S4). When comparing elephant rumble and
trumpet calls at the species level, there were no significant
differences in responses to call type (p > 0.4; electronic sup-
plementary material, table S5, S6). Relative to controls, run
responses to rumble calls were only marginally significant for
impala ( p = 0.1). Both impala and wildebeest significantly
increased run responses to elephant trumpets (figure 1).
Other comparisons showed no significant effect relative to
controls (electronic supplementary material table S5, S6).
4. Discussion
We revealed strong fear responses of ungulates to elephant
vocalizations. The effects on individuals running from
elephant vocalizations were slightly weaker on average com-
pared to the most lethal predator on our site (leopard) but
the amount of vigilance behaviour was comparable between
elephant and leopard vocalizations. Moreover, our average
ungulate run response (48%) to elephant vocalizations was
comparable to their response to wild dogs (Lycaon pictus)
(47%) [35] and greater than their response to spotted hyena
(Crocuta crocuta) (35%) and domestic dog (Canis familiaris) voca-
lizations (34%) quantified in a study using a similar approach
in this area [22]. However, this run response varied in magni-
tude across ungulate species from 74% of impala running
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compared with only 39% of nyala (figure 1a). Across all
comparisons, four of six primary responses revealed no
significant differences in response to elephants and leopards,
suggesting that elephants are generally perceived as dangerous
to ungulate herbivores and call to broaden the frameworks on
fear to consider dominant species, such as megaherbivores, as
key interactions.

The responses of ungulates to elephant vocalizations could
be driven by at least three mechanisms. First, resource compe-
tition could drive responses, such that species that overlap in
resource usemay have greater fear responses than other species
[36]. There was some support for this hypothesis with impala
showing the strongest response to elephants and having the
more comparable diets to elephants than other species we con-
sidered [37] and habitat use overlaps with elephants [38,39].
Yet nyala also share habitat preferences with elephants [39],
and elsewhere have been shown to run less frequently but
be more vigilant to predator playbacks than impala in this
system [22], suggesting that differences in responses by
impala and nyala may be driven by different types of anti-
predator behavioural strategies. Second, responses could be
due to aggressive behaviors by elephants to other species.
Observations from water holes suggest that elephants may be
aggressive to other species in such situations [18,19], yet it
remains unclear whether elephants vary in their aggression
to different species and if aggressive behaviors near water
holes transfer to fear by ungulates in other areas. Trumpeting
by elephants can occur in response to fear and can represent
a more aggressive response than rumbles (which are used
in social activities) [34]; we found no significant differences in
ungulate responses to these different call types, although trum-
peting tended to elicit slightly more frequent run responses
than rumbles andmore often elicited responses that were simi-
lar to responses to leopards (figure 1; electronic supplementary
material, table S5, S6). While sample sizes were more limited
for interpreting elephant call types, these results suggest that
certain animals may have learned to elude elephants that
show signs of aggressive behaviors by running, while being
generally more vigilant in the presence of elephants otherwise.
Finally, responses to elephants could be based on generalized
responses to similar cues or generalized neophobia. In this
way, ‘fear generalization’ could be an imperfect but largely
successful strategy to danger [1,40]. Because elephants
were extirpated in this system over 100 years ago and only
transient elephants have occurred since, we expect that these
responses reflect either innate responses or imperfect general-
ized responses based on other megaherbivores in this region
(e.g. Hippopotamus amphibius). Experiments designed to test
these alternative hypotheses could help shed light on why
fear of megaherbivores may arise.

Regardless of the mechanism behind these responses, these
results suggest that fear responses can emerge not just from
predators, but frommegafauna such as elephantsmore broadly,
which has several potential consequences. First, these results
point to the potential of cascading effects of elephants on the
behaviour of other species in savanna ecosystems. While the
direct effects of elephants on ecosystem structure and function
are increasingly understood [16], elephantsmayalso have indir-
ect effects on savanna ecosystems by generating changes in the
behaviour of ungulates. Second, our results suggest that in
ecosystems where elephants have been lost, rewilding of ele-
phants [41–43] may benefit from ungulates retaining their fear
responses, as observed in our study.

Our experiment examined reactive responses of ungulates
to elephant cues but was not designed to understand
proactive responses [21]. Other observations focused on
proactive responses in ungulate species suggests that
dominant species may not elicit strong interspecific avoid-
ance [36]. However, interspecific aggression appears to be
common across the vertebrate tree of life [11,44], highlighting
the need for experiments aimed at understanding potential
effects. Wells et al. [45] provided experimental evidence
that megaherbivores may elicit changes in habitat use of
other ungulates, where several species avoided areas where
megaherbivores were present. Our results suggest that pat-
terns like these may be driven by fear and call for a better
understanding of how megaherbivores may alter the behav-
iour of other species and its consequences for communities
and ecosystems.
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